摘要
Edge to interior gradients in forest fragments can influence the species composition and community structure as a result of variations in microenvironment and edaphic variables. We investigated the response of microenvironment and edaphic variables to distance from a tropical montane forest (locally known as shola)-grassland edge using one-edge and multiple-edge models. The edpahic variables did not show any differences between the grassland and shola soils. We observed that conventional one-edge models sufficiently explained variation trends in microenvironment along the edge to interior gradient in large fragments. As with other studies on small fragments though, we observed no edge effects with the use of a conventional one-edge model. However, the inclusion of multiple edges in small fragments signifycantly improved model fit. We can conclude that small fragments dominated by edge habitat may in fact resemble larger fragments with the inclusion of multiple edges. Our models did not evaluate non-linear effects which often better explain patterns in edge-interior gradients. The incorporation of such non-linear models in the system might further improve model fit.
Edge to interior gradients in forest fragments can influence the species composition and community structure as a result of variations in microenvironment and edaphic variables. We investigated the response of microenvironment and edaphic variables to distance from a tropical montane forest (locally known as shola)-grassland edge using one-edge and multiple-edge models. The edpahic variables did not show any differences between the grassland and shola soils. We observed that conventional one-edge models sufficiently explained variation trends in microenvironment along the edge to interior gradient in large fragments. As with other studies on small fragments though, we observed no edge effects with the use of a conventional one-edge model. However, the inclusion of multiple edges in small fragments signifycantly improved model fit. We can conclude that small fragments dominated by edge habitat may in fact resemble larger fragments with the inclusion of multiple edges. Our models did not evaluate non-linear effects which often better explain patterns in edge-interior gradients. The incorporation of such non-linear models in the system might further improve model fit.