摘要
The aim of this work has been to evaluate the aluminium (Al(III)) traces contents in 24-hour urine samples from subjects with different tobacco smoke expositions using a new methodology with 1,4-dihydroxy-9, 10-anthraquinone (Quinizarine, QZ) as a fluorosphore. Biological samples were tested using commercial reagent strips and clinical parameters. Al(III) was determined complexing with QZ followed by a solid phase extraction step using Nylon membranes as a solid support. The analyte was subsequently quantified by solid surface fluorescence (SSF, λem= 573, λexc= 490) with a detection limit of 0.88 μg L-1 and quantification limit of 2.69 μg L-1. The calibration curve was linear from 2.69 to 499.13 μg L-1 Al(III) (R2 = 0.9973). Urine samples were successfully analysed with an average recovery close to 100%. Solid phase extraction step showed efficacy to eliminate foreign ions and the highly fluorescent matrix own of urine. Results were validated by electrothermal atomic absorption spectrometry (ETAAS) with an adequate concordance. The new methodology has low operation cost with simple instrumentation and without organic solvent.
The aim of this work has been to evaluate the aluminium (Al(III)) traces contents in 24-hour urine samples from subjects with different tobacco smoke expositions using a new methodology with 1,4-dihydroxy-9, 10-anthraquinone (Quinizarine, QZ) as a fluorosphore. Biological samples were tested using commercial reagent strips and clinical parameters. Al(III) was determined complexing with QZ followed by a solid phase extraction step using Nylon membranes as a solid support. The analyte was subsequently quantified by solid surface fluorescence (SSF, λem= 573, λexc= 490) with a detection limit of 0.88 μg L-1 and quantification limit of 2.69 μg L-1. The calibration curve was linear from 2.69 to 499.13 μg L-1 Al(III) (R2 = 0.9973). Urine samples were successfully analysed with an average recovery close to 100%. Solid phase extraction step showed efficacy to eliminate foreign ions and the highly fluorescent matrix own of urine. Results were validated by electrothermal atomic absorption spectrometry (ETAAS) with an adequate concordance. The new methodology has low operation cost with simple instrumentation and without organic solvent.