期刊文献+

Machinability Study of Al-5Cu-TiB<sub>2</sub>In-situ Metal Matrix Composites Fabricated by Flux-assisted Synthesis

Machinability Study of Al-5Cu-TiB<sub>2</sub>In-situ Metal Matrix Composites Fabricated by Flux-assisted Synthesis
下载PDF
导出
摘要 In-situ composites are multiphase materials where the reinforcing phase is synthesized by a chemical reaction. The reinforcement generated by this route is very small in size and homogeneously distributed in the matrix. Adoption of the engineering application of this material requires a systematic study of machinability characteristics. This work is an attempt to understand the machinability behavior of the Al-5Cu-TiB2 in-situ metal matrix composites fabricated by Flux-assisted Synthesis. The focus of this study is to investigate the effect of the cutting speed and feed rate on flank wear, cutting force, and surface roughness. The contribution of this paper is to study the influence of in-situ-formed TiB2 reinforcement on the machinability of Al-5Cu alloy. It was found that the increase in cutting speed increased the flank wear, reduced the cutting force, and minimized the surface roughness. Increase in the feed rate increased the flank wear, cutting force, and surface roughness. A higher reinforcement ratio increased the tool wear, reduced the cutting force, and increased the surface roughness. These findings can provide suitable machining parameters in turning of Al-5Cu-TiB2 in-situ metal matrix composites. In-situ composites are multiphase materials where the reinforcing phase is synthesized by a chemical reaction. The reinforcement generated by this route is very small in size and homogeneously distributed in the matrix. Adoption of the engineering application of this material requires a systematic study of machinability characteristics. This work is an attempt to understand the machinability behavior of the Al-5Cu-TiB2 in-situ metal matrix composites fabricated by Flux-assisted Synthesis. The focus of this study is to investigate the effect of the cutting speed and feed rate on flank wear, cutting force, and surface roughness. The contribution of this paper is to study the influence of in-situ-formed TiB2 reinforcement on the machinability of Al-5Cu alloy. It was found that the increase in cutting speed increased the flank wear, reduced the cutting force, and minimized the surface roughness. Increase in the feed rate increased the flank wear, cutting force, and surface roughness. A higher reinforcement ratio increased the tool wear, reduced the cutting force, and increased the surface roughness. These findings can provide suitable machining parameters in turning of Al-5Cu-TiB2 in-situ metal matrix composites.
作者 A. Mahamani
出处 《Journal of Minerals and Materials Characterization and Engineering》 2011年第13期1243-1254,共12页 矿物质和材料特性和工程(英文)
关键词 IN-SITU composite FLANK wear cutting force surface roughness In-situ composite Flank wear cutting force surface roughness
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部