摘要
Low temperature coal tar contained a large amount of phenols, aromatic hydrocarbons and alkanes;the separation of phenols from coal tar has a great significance to the deep processing of coal tar. In this work, the separation of m-cresol from cumene and n-heptane by liquid–liquid extraction using ionic liquids(ILs) as extractants was studied. The suitable ILs were screened by conductor-like screening model for real solvents(COSMO-RS)model and the liquid–liquid phase equilibrium(LLE) experiments were to verify the accuracy of the screening results. The extraction conditions such as extraction time, extraction temperature and mass ratio of ILs to model oils were evaluated. An internal mechanism of the m-cresol extract by ILs was revealed by COSMO-RS calculation and FT-IR. The results showed that the selected ILs can extract m-cresol effectively from cumene and nheptane, 1-ethyl-3-methylimidazolium acetate(emim CH3 COO) was the best extraction solvent. A hydrogen bond between anion of ILs and phenolic hydroxyl groups was observed. M-cresol in model oils could be extracted with extraction efficiencies up to 98.85% at an emim CH3 COO: model oils mass ratio of 0.5 and 298.15 K,emim CH3 COO could be regenerated and reused for 4 cycles without obvious decreases in extraction efficiency and extractant mass.
Low temperature coal tar contained a large amount of phenols, aromatic hydrocarbons and alkanes; the separation of phenols from coal tar has a great significance to the deep processing of coal tar. In this work, the separation of m-cresol from cumene and n-heptane by liquid–liquid extraction using ionic liquids(ILs) as extractants was studied. The suitable ILs were screened by conductor-like screening model for real solvents(COSMO-RS)model and the liquid–liquid phase equilibrium(LLE) experiments were to verify the accuracy of the screening results. The extraction conditions such as extraction time, extraction temperature and mass ratio of ILs to model oils were evaluated. An internal mechanism of the m-cresol extract by ILs was revealed by COSMO-RS calculation and FT-IR. The results showed that the selected ILs can extract m-cresol effectively from cumene and nheptane, 1-ethyl-3-methylimidazolium acetate(emim CH3 COO) was the best extraction solvent. A hydrogen bond between anion of ILs and phenolic hydroxyl groups was observed. M-cresol in model oils could be extracted with extraction efficiencies up to 98.85% at an emim CH3 COO: model oils mass ratio of 0.5 and 298.15 K,emim CH3 COO could be regenerated and reused for 4 cycles without obvious decreases in extraction efficiency and extractant mass.
基金
Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600305).