期刊文献+

平方图的顶点PI指数

The vertex PI index of power graphs
下载PDF
导出
摘要 设G=(V,E)为简单连通图,称PI_(v)(G)=∑_(e=uv∈E)(n_(u)(e|G)+n_(v)(e|G))为G的顶点PI指数,其中n_(u)(e|G)表示图G中到边e=uv的端点u的距离小于到端点v的距离的顶点数,n_(v)(e|G)表示图G中到边e=uv的端点v的距离小于到端点u的距离的顶点数.用分类讨论法得到了圈和路的平方图的顶点PI指数. LetG=(V,E)be a simple graph and the vertex PIindex of graph G is defined as PI_(v)(G)=Σ_(e=uv∈E)(n_(u)(e|G)+n_(v)(e|G)),where n_(u)(e|G)denotes the number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v,and n_(v)(e|G)denotes the number of vertices of G whose distance to the vertex v is smaller than the distance to the vertex u.In this paper,we obtain the vertex PI index of Power graph of Cycle and Path by uses the classification discussion method.
作者 陈建华 红霞 CHEN Jianhua;HONG Xia(Department of mathematics,Luoyang Normal University,Luoyang 471022,China)
出处 《商丘师范学院学报》 CAS 2023年第6期1-3,共3页 Journal of Shangqiu Normal University
基金 国家自然科学基金资助项目(11701257) 校级项目(2020xjgj016,2019xjjj002) 校级青年骨干教师培训计划(2020GGJS194,2019GGJS202,2019XJGGJS-10) 校级教师教育课程改革研究项目(2020-JSJYYB-053)
关键词 顶点PI指数 平方图 vertex PI index power graph cycle path
  • 相关文献

参考文献3

二级参考文献11

  • 1N. Trinajstric. Chemical Graph Theory [M]. Ind. revised ed. , CRC Press, BocaRaton, 1992.
  • 2H. Wiener. Structural determination of paraffin boiling points [ J ]. Aner. Chem. Soc, 1947 (69) 17 - 20.
  • 3A. A. Dobrynin, R. Entringer, I. Gutman. Wiener index of trees : Theory and applications [ J ]. Acta APPL. Math, 2001 ( 66 ) : 211 - 245.
  • 4A. Graorac, I. Gutman. S. Klavzar, P. Zigert. Wiener index of hexagonal systems [ J ]. Acta Apple. Math,2002 (72) :247 - 294.
  • 5I. Gutman. A formula for the Wiener number of trees and its extension to graphs containing cycles [ J ]. Graph Theory Notes York, 1994(27) :9 - 15.
  • 6P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, G. Domotor. The Szeged index and an analogy with Wiener index [ J ]. Chem. Inform. Comput. Sci, 1995 (35) : 547 - 550.
  • 7P. V. Khadilar. , P. P. Kale, N. V. Deshpande, S. Karmarkar, V. K. Agrawal. Novel PI indices of hexagonal chain [ J ]. Math. Chem, 2001 (29) : 143 - 150.
  • 8P. V. Khadikar, S. Kavmarkar, V. K. Agrawal. Anovel PI index and its applications to QSRP/QSAR studies [ J ]. Chem. Inf. Comput. Sci,2001,41 (4) :934 - 949.
  • 9Gutman, P. V. Khadikar, P. V. Rajput, S. Kamarkar. The Szeged index of polyacenes [J]. Serb. Chem. Soc, 1995 (60) :759 -764.
  • 10H. Deng, S. Chen., J. Zhang. The PI index of phenylenes [J]. Math. Chem,2008 (43) : 19 - 25.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部