期刊文献+

Improved Whale Optimization Algorithm Based on Mirror Selection 被引量:5

基于镜像选择的改进鲸鱼优化算法
下载PDF
导出
摘要 Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance. 针对鲸鱼优化算法收敛速度慢、精度低、易陷入局部最优解的缺点,提出了一种基于镜像选择的改进鲸鱼优化算法(Whale optimization algorithm based-on mirror selection,WOA-MS)。具体改进包括:(1)为了平衡全局搜索和局部开采,提出了一种基于Branin函数的自适应非线性惯性权重;(2)为了提高算法的个体质量和收敛速度,提出了一种镜像选择方法。通过对若干种测试函数进行优化,并与其他三种算法的实验结果进行比较,证明了WOA-MS具有良好的优化性能。
作者 LI Jingnan LE Meilong 李璟楠;乐美龙(南京航空航天大学民航学院,中国南京211106)
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期115-123,共9页 南京航空航天大学学报(英文版)
基金 supported by the Natural Science Foundation of Jiangsu Province (No. BK20151479) the Open Foundation of Graduate Innovation Base in Nanjing University of Aeronautics and Astronautics(No. kfjj20190736)
关键词 inertia weight mirror selection whale optimization algorithm(WOA) 惯性权重 镜像选择 鲸鱼优化算法(Whale optimization algorithm based-on mirror selection,WOA)
  • 相关文献

参考文献2

二级参考文献14

  • 1王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4程志刚,张立庆,李小林,吴晓华.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,29(1):103-106. 被引量:32
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks.IV Piscataway,NJ:IEEE Service Center, 1995: 1942-1948.
  • 6Meissner M,Schmuker M.Optimized particle swarm optimization and its application to artificial neural network training [J}.BMC Bioinformatics, 2006 ( 7 ) : 125-130.
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 1998: 303-308.
  • 8Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]// Proc IEEE International Conference on Evolutionary Computation. San Francisco,USA:IEEE,2001 : 101-106.
  • 9Krink T,Vesterstroem J S.Particle swarm optimization with spatial particle extension[C]//Proc IEEE International Conference on Evolutionary Computation.Honolulu, Hawaii : IEEE, 2002 : 1474-1479.
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation.Washington, USA: IEEE, 1999 : 1945-1950.

共引文献9

同被引文献48

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部