期刊文献+

基于动态功能连接的握力运动参数脑电识别

EEG Recognition of Grip Motion Parameters Based on Dynamic Functional Connectivity
下载PDF
导出
摘要 为了研究握力运动过程中脑功能网络(Brain Functional Network,BFN)的动态变化特征及对握力运动参数任务识别的影响,提出一种加权相位滞后指数法构建动态脑功能网络。通过对预处理的EEG时间序列按照一定的非重叠窗口截断成等长的子时间序列,按时间顺序,利用相位同步特性对所有子序列进行筛选;筛选出的有效数据段用加权相位滞后指数法估计功能连接大小,构建相应节点的脑功能网络;提取4种不同网络特征参数,对其进行串行融合获得特征向量;最后以支持向量机作为分类器进行分类。与静息态和不均匀子时段划分方法相比,所提方法的平均识别率提高到了74%。 In order to study the dynamic change characteristics of Brain Functional Network(BFN)during grip exercise and its influence on the task recognition of grip exercise parameters,this paper proposes a weighted phase lag index method to construct a dynamic brain functional network.By truncating the pre-processed EEG time series into equal length sub-series according to a certain nonoverlapping window,all the sub-series are screened in time order by using the phase synchronization property;the screened valid data segments are estimated by the weighted phase lag index method to estimate the functional connection size and construct the brain functional network of corresponding nodes;the four different network feature parameters are extracted and serially fused to obtain the feature vectors.Finally,a support vector machine is used as a classifier for classification.Compared with the resting-state and inhomogeneous sub-time segmentation methods,the average recognition rate of the method in this paper is improved to 74%.
作者 熊馨 廖江黎 伏云发 贺建峰 XIONG Xin;LIAO Jiangli;FU Yunfa;HE Jianfeng(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电视技术》 2021年第11期128-132,136,共6页 Video Engineering
基金 国家自然科学基金(No.82060329) 云南省教育厅科学研究基金项目(No.2020J0052)。
关键词 非重叠窗口截断 动态脑功能网络 相位同步特性筛选 加权相位滞后指数 non-overlapping window truncation dynamic brain function network phase synchronization feature screening weighted phase lag index
  • 相关文献

参考文献2

二级参考文献141

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2魏景汉,罗跃嘉.(2010).事件相关电位原理与技术北京:科学出版社.
  • 3Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robin- son C J, Vaughan T M. Brain-computer interface technol- ogy: a review of the first international meeting. IEEE Trans- actions on Rehabilitation Engineering, 2000, 8(2): 164-173.
  • 4Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180.
  • 5Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuro- science. New York: W. W. Norton and Company, Inc., 2002.
  • 6Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184.
  • 7Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 1964, 203(4943): 380-384.
  • 8Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor con- trol. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259.
  • 9Mason S G, Bashshati A, Fatourechi M, Navarro K F, Birch G E. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137 -169.
  • 10Vaughan T M , Heetderks W J, Trejo L J, Rymer W Z, Weinrich M, Moore M M, Kiibler A, Dobkin B H, Birbaumer N, Donchin E, Wolpaw E W, Wolpaw J R. Brain-computer interface technology: a review of the second international meeting. IEEE Transactions on Rehabilitation Engineering, 2003, 11(2): 94-109.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部