期刊文献+

一种基于地面激光雷达点云的建筑物外轮廓自动提取方法

A method for automatic extraction of building outlines based on ground laser radar point clouds
下载PDF
导出
摘要 本文针对基于地面点云数据的建筑物轮廓自动提取,设计了一种由粗到精的提取方法。首先,将点云降维,在图像中进行轮廓优化和粗提取;然后,将欧式距离聚类和全局最小二乘方法与RANSAC方法结合,对提取出的粗轮廓进行更精细地拟合,得到原始的线要素;最后,采用平面几何拓扑约束和经验模型的方法,对得到的线要素进行简化和连接,完成轮廓的提取。试验结果表明,本文方法能够有效提取出建筑物轮廓,与传统方法实测相比,轮廓顶点处的位置精度总体小于5 cm,能够满足大多数城市测量应用场景。 This paper designs a coarse-to-fine extraction method for automatic extraction of building outlines from ground point cloud.First,the point cloud is converted into a binary image,where outline optimization and coarse extraction are performed.Then,a combination of Euclidean distance clustering,global least squares method,and RANSAC is used to fit the coarsely extracted outline more precisely to obtain the original linear features.Finally,plane geometric topological constraints and empirical models are used to simplify and connect the obtained linear features to complete the outline extraction.Experimental results show that the algorithm can effectively extract building outlines.Compared with traditional methods,the position accuracy at the outline vertices is generally less than 5 cm,which can meet the requirements of most urban surveying application scenarios.
作者 陈壮 罗保林 黄应华 李昊 CHEN Zhuang;LUO Baolin;HUANG Yinghua;LI Hao(Chengdu Institute of Survey&Investigation,Chengdu 610023,China;Chengdu Jiaoda Guangmang Technology Co.,Ltd.,Chengdu 610041,China;China Railway Design Cooperation,Tianjin 300142,China)
出处 《测绘通报》 CSCD 北大核心 2024年第S02期221-225,共5页 Bulletin of Surveying and Mapping
关键词 激光点云 建筑物轮廓提取 图像处理 线要素简化 RANSAC laser point cloud building outline extraction algorithm image processing line feature simplification RANSAC
  • 相关文献

参考文献2

二级参考文献12

  • 1MJ Milroy,C Bradley,GW Vickers.Segmentation of a wrap-around model using an active contour[J]. Computer-Aided Design . 1997 (4)
  • 2C. E. Shannon.A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review . 2001 (1)
  • 3M. Yang,E. Lee.Segmentation of measured point data using a parametric quadric surface approximation[J]. Computer-Aided Design . 1999 (7)
  • 4赵煦.基于地面激光扫描点云数据的三维重建方法研究[D].武汉大学2010
  • 5Adrien Gressin,Clément Mallet,Jér?me Demantké,Nicolas David.Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing . 2013
  • 6Zhe Bian,Ruofeng Tong.Feature-preserving mesh denoising based on vertices classification[J]. Computer Aided Geometric Design . 2010 (1)
  • 7H. Woo,E. Kang,Semyung Wang,Kwan H. Lee.A new segmentation method for point cloud data[J]. International Journal of Machine Tools and Manufacture . 2002 (2)
  • 8N. Gelfand,,N.M. L. Guibas.Robust Global Registration. Symposium onGeometry Processing . 2005
  • 9Yang Y L,Lai Y K,Hu S M.Robust principal curvatures on multiple scales. Symposium on Geometry Processing . 2006
  • 10Rusu R B,Blodow N,Marton Z C, et al.Aligning point cloud views using persistent featurehistograms. Intelligent Robots and Systems,2008. IROS2008. IEEE/RSJ InternationalConference on . 2008

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部