期刊文献+

Highly Active Interfacial Sites in SFT-SnO_(2) Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands:Envisioned Theoretically and Experimentally 被引量:1

下载PDF
导出
摘要 Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
出处 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期384-397,共14页 能源与环境材料(英文)
基金 supported by the National Natural Science Foundation of China(Grant No.32250410309 and 52105582) Natural Science Foundation of Guangdong Province(Grant No.2022A1515010894 and 2022B0303040002) Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030 and JCYJ20220818095810023) Shenzhen-Hong Kong-Macao S&T Program(Category C:SGDX20210823103200004)
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部