摘要
For Vilenkin-like system, the authors define a new operator H*f := supn |Hnf|, where Hnf is the weighted average for partial sums, and prove that H* is of type (Hp* (Gm), Lp(Gm)) for all 1/2 < p ≤ ∞. As a consequence, the authors prove the operator S*f := supn |Snf| is of type (p, p) for 1 < p < ∞, where Snf is the n-partial sum.
For Vilenkin-like system, the authors define a new operator H*f := supn |Hnf|, where Hnf is the weighted average for partial sums, and prove that H* is of type (Hp* (Gm), Lp(Gm)) for all 1/2 < p ≤ ∞. As a consequence, the authors prove the operator S*f := supn |Snf| is of type (p, p) for 1 < p < ∞, where Snf is the n-partial sum.
基金
Sponsored by the National NSFC under grant No10671147
Foundation of Hubei Scientific Committee under grant NoB20081102