期刊文献+

A classification of some regular p-groups and its applications 被引量:11

A classification of some regular p-groups and its applications
原文传递
导出
摘要 In this paper we classify regular p-groups with type invariants (e, 1, 1, 1) for e ≥ 2 and (1, 1, 1, 1, 1). As a by-product, we give a new approach to the classification of groups of order p5, p ≥ 5 a prime. In this paper we classify regular p-groups with type invariants (e, 1,1,1) for e≥2 and (1,1,1,1,1). As a by-product, we give a new approach to the classification of groups of order p5, p ≥ 5 a prime.
出处 《Science China Mathematics》 SCIE 2006年第3期366-386,共21页 中国科学:数学(英文版)
基金 supported by the National Natural Science Founda tion of China(Grant Nos.10371003&10471085) Natural Science Foundation of Beijing 1052005) Natural Science Foundation of Shanxi Province(Grant No.20051007) Key Project of Ministry of Education(Grant No.02023) The Returned Abroad-Student Found of Shanxi Province(Grant No.[2004]7).
关键词 REGULAR p-groups type invariants UNIQUENESS bases groups of order p5. regular p-groups, type invariants, uniqueness bases, groups of order p5.
  • 相关文献

参考文献19

  • 1[1]Hall,P.,A contribution to the theory of groups of prime-power order,Proc.London Math.Soc.,1934,36:29-95.
  • 2[2]Xu,M.Y.,P.Hall's basis theorem for regular p-groups and its application to some classification problems,Communications in Algebra,1991,19:1271-1280.
  • 3[3]James,R.K.,The groups of order p6 (p an odd prime),Math.Comp.,1980,34:614-637.
  • 4[4]Newman,M.F.,O'Brien,E.A.,Vaughan-Lee,M.R.,Groups and nilpotent Lie rings whose order is the sixth power of a prime,J.Algebra,2004,278:383 401.
  • 5[5]Bagnera,G.,La composizione dei Gruppi finiti il cui grado é la quinta potenza mid un numero primo,Ann.Mat.Pura.Appl.,1898,1 (3):137-228.
  • 6[6]Bender,H.A.,A determination of the groups of order p5,Ann.Math.,1927,29 (2):61-72.
  • 7[7]De Séguier,J.A.,Théorie des groupes finis,Eléments de la théorie des groupes abstraits,Paris:Gauthier-Villa..rs,1904.
  • 8[8]Schreier,O.,Uber die Erweiterung von Gruppen Ⅱ,Abh.Math.Sem.Univ.Hamburg,1926,4:321-346.
  • 9[9]Huppert,B.,Uber das Produkt von paarweise vertauschbaren zyklischen Gruppen,Math.Z.,1953,58:243 264.
  • 10[10]Newman,M.F.,Xu,M.Y.,Metacyclic groups of prime-power order (Research announcement),Adv.in Math.,1988,17:106 107.

同被引文献24

  • 1ZHANG QinHai & QU HaiPeng School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China.On Hua-Tuan's conjecture[J].Science China Mathematics,2009,52(2):389-393. 被引量:6
  • 2Zhang JunQiang,Li XianHua.Finite p-groups all of whose proper subgroups have small derived subgroups[J].Science China Mathematics,2010,53(5):320-325. 被引量:2
  • 3Berkovich Y.Groups of Prime Power Order I. . 2008
  • 4Xu M Y.The Introduction to Finite Groups I. . 2007
  • 5Xu M Y,Qu H P.Finite p-groups. . 2010
  • 6W Bosma,J Cannon,C Playoust.The MAGMA algebra system I: the user language. Journal of Symbolic Logic . 1997
  • 7Huppert B.Endliche Gruppen I. . 1967
  • 8Blackburn N.Generalizations of certain elementary theorems onp-groups. Proceedings of the London Mathematical Society . 1961
  • 9Tuan H F.An Anzahl theorem of Kulakoff’s type for p-groups. Sci Rep Nat Tsing Hua Univ Ser A . 1948
  • 10Xu M.Some problems on finite p groups. Adv Math (Beijing) . 1985

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部