期刊文献+

CONVERGENCE OF ISHIKAWA TYPE ITERATIVE SEQUENCE WITH ERRORS FOR QUASI-CONTRACTIVE MAPPINGS IN CONVEX METRIC SPACES 被引量:3

CONVERGENCE OF ISHIKAWA TYPE ITERATIVE SEQUENCE WITH ERRORS FOR QUASI-CONTRACTIVE MAPPINGS IN CONVEX METRIC SPACES
下载PDF
导出
摘要 Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces. Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第9期1001-1008,共8页 应用数学和力学(英文版)
基金 Foundation items:the National Ntural Science Foundation of China(19771058) the Natural Science Foundation of Education Department of Sichuan Province(01LA70)
关键词 convex metric space fixed point generalized Ishikawa (Mann) iterative sequence with errors general quasi-contractive mapping convex metric space fixed point generalized Ishikawa (Mann) iterative sequence with errors general quasi-contractive mapping
  • 相关文献

参考文献10

  • 1Takahashi W.A convexity in metric space and nonexpansive mappings I[].Kodai Mathematical Seminar Reports.1970
  • 2Naimpally S A,Singh K I.Extensions of some fixed point theorems of Rhoades[].Journal of Mathematical Analysis and Applications.1983
  • 3LIU Qi-hou.On Naimpally and Singh’s open questions[].Journal of Mathematical Analysis and Applications.1987
  • 4Chang Shi-sheng,Cho Y J,Jung J S,et al.Iterative approximations of fixed points and solutions for strongly accrective and strongly pseudo-contractive mappings in Banach spaces[].Journal of Mathematical Analysis and Applications.1998
  • 5LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[].Journal of Mathematical Analysis and Applications.1990
  • 6Rhoades H E.Convergence of an Ishikawa type iteration scheme for a generalized contraction[].Journal of Mathematical Analysis and Applications.1994
  • 7Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[].Proceedings of the American Mathematical Society.1998
  • 8Ciric L B.A generalization of Banach’s contraction principle[].Proceedings of the American Mathematical Society.1974
  • 9Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[].Journal of Mathematical Analysis and Applications.1998
  • 10XU Hong-kun.A note on the Ishikawa iteration scheme[].Journal of Mathematical Analysis and Applications.1992

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部