摘要
in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. Using the Plasma Source ion Implantation (PSII) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface.
in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. Using the Plasma Source ion Implantation (PSII) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface.
基金
This item was supported by the Defense Science Foundation with Grant No.98JS50.3.3 HZ5801.