期刊文献+

动态限制搜索区域的带约束K则最优路径算法 被引量:5

Constrained K-shortest paths algorithm within dynamic restricted searching area
下载PDF
导出
摘要 为了有效解决分布式动态诱导系统中存在的拥挤漂移问题,有针对性地根据城市交通网络的空间分布特性提出了适合于导航用户使用的动态限制搜索区域的带约束K则最优路径算法。该算法基于MAPX控件编程实现,并采用VISSIM仿真软件进行了模拟和测试。实验结果表明:该算法一方面合理限制了路网的搜索规模、显著提高了路径优化算法的执行效率;另一方面又有效均衡了路网上的交通流,预防了拥挤漂移现象的发生,为个体出行者和整个交通系统带来效益。 For a better solution of the congestion shifting problem in DDVGS(Distributed Dynamic Route Guidance System),this paper develops a constrained K-shortest paths algorithm within a dynamic restricted searching area in consideration of a real city road net spatial distribution features which is suitable for the travelers and realizes its program on the basis of MAPX Control.The actual effect of this algorithm is tested with the micro simulation tool VISSIM.Some conclusions have been drawn as follows,the constrained K-shortest paths algorithm can not only decrease the searching scale and improve its running efficiency but also efficiently balance the traffic flow and prevent the congestion shifting problem,so that both the travelers and the whole system could benefit a lot from this.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第S2期172-176,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 "863"国家高技术研究发展计划项目(2007AA12Z242 2007AA11Z245)
关键词 交通运输系统工程 城市交通流诱导系统 动态限制搜索区域 带约束K则最优路径 拥挤漂移 engineering of communication and transportation system urban traffic flow guidance system dynamic restricted searching area constrained K-shortest paths congestion shifting
  • 相关文献

参考文献1

二级参考文献2

共引文献73

同被引文献39

  • 1王媛,杨兆升,高鹏.预防拥挤漂移的带约束K则最优路径算法[J].北京工业大学学报,2009,35(3):345-349. 被引量:3
  • 2李威武,王慧,钱积新.智能交通系统中路径诱导算法研究进展[J].浙江大学学报(工学版),2005,39(6):819-825. 被引量:33
  • 3李楷,钟耳顺,曾志明,曹国峰.基于分层网络拓扑结构的最优路径算法[J].中国图象图形学报,2006,11(7):1004-1009. 被引量:21
  • 4马永锋,陆键,项乔君,魏连雨.基于出行决策的公路网多目标最优路径算法[J].交通运输工程学报,2007,7(3):100-105. 被引量:10
  • 5Lee C K. A multiple path routing strategy for vehicle route guidance systems[J]. Transportation Research, 1994, 2(3): 185-195.
  • 6Yen J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 716-721.
  • 7Lawler E. Combinatorial optimization: Networks and matroids[M]. New York: Courier Dover Publications, 1976: 92-104.
  • 8Pang K H, Cran T. Adaptive route selection for dynamic route guidance system based on fuzzy neural approaches[J]. IEEE Transactions on Vehicular Technology, 1999, 48(6): 2028-2041.
  • 9McAllister C D, Smpson T W, Kemper L, et al. Robust multiobjective optimization through collaborative optimization and linear physical programming[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004:1 16.
  • 10Achill M, CHEN Xuan. Visualizing the optimization process in real-time using physical programming[J]. Engineering Optimization, 2000, 32(6): 721-747.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部