期刊文献+

Modified Lagrange Multiplier Method and Generalized Variational Principle in Fluid Mechanics 被引量:1

Modified Lagrange Multiplier Method and Generalized Variational Principle in Fluid Mechanics
下载PDF
导出
摘要 The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method. The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method.
作者 何吉欢
出处 《Advances in Manufacturing》 SCIE CAS 1997年第2期117-122,共6页 先进制造进展(英文版)
关键词 Lagrange multiplier method variational crisis variational principle semi-inverse method trialfunctional Lagrange multiplier method, variational crisis, variational principle, semi-inverse method, trialfunctional
  • 相关文献

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部