摘要
A procedure has been developed for making voiced, unvoiced, and silence classifications of speech by using a multilayer feedforward net -work. Speech signals were analyzed sequentially and a feature vector was obtained for each segment . The feature vector served as input to a 3-layer feedforward network in which voiced, unvoiced, and silence classification was made. The network had a 6-12-3 node architecture and was trained using the generalized delta rule for back propagation of error . The performance of the network was evaluated using speech samples from 3 male and 3 female speakers . A speaker-dependent classification rate of 94.7% and speaker-independent classification rate of 94.3% were obtained. It is concluded that the voiced, unvoiced , and silence classification of speech can be effectively accomplished using a multilayer feedforward network.
A procedure has been developed for making voiced, unvoiced, and silence classifications of speech by using a multilayer feedforward net -work. Speech signals were analyzed sequentially and a feature vector was obtained for each segment . The feature vector served as input to a 3-layer feedforward network in which voiced, unvoiced, and silence classification was made. The network had a 6-12-3 node architecture and was trained using the generalized delta rule for back propagation of error . The performance of the network was evaluated using speech samples from 3 male and 3 female speakers . A speaker-dependent classification rate of 94.7% and speaker-independent classification rate of 94.3% were obtained. It is concluded that the voiced, unvoiced , and silence classification of speech can be effectively accomplished using a multilayer feedforward network.