期刊文献+

(s^r)×s^n正规部分因子设计最优区组和折叠反转方案

Optimal Blocking and Foldover Plans of Regular(s^r)×s^n Fractional Factorial Designs
下载PDF
导出
摘要 讨论了在同时应用区组和折叠反转技巧时,在(s^r)×s^n正规部分顺子设计中选择最优设计的问题,其中r(≥2)是一个整数,s是一个素数或素数幂,以分区组(s^r)×s^n正规部分因子设计折叠反转的一般结构为基础,给出了扩大区组设计的处理和区组裂区字长型的定义.可以证明,扩大区组设计的处理和区组裂区字长型与区组折叠反转方案无关.对于一个未分区组的初始设计,针对扩大区组设计定义的区组和折叠反转方案有最小混杂当且仅当不考虑区组方案时折叠反转方案有最小混杂;不考虑折叠反转方案时区组方案有最小混杂. This article considers the problem of choosing optimal designs of regular(s^r)×s^n fractional factorial designs when both blocking and foldover techniques are employed,here r(≥2) is an integer and,s is a prime or prime power.Based on a general decomposition structure of blocked regular(s^r)×s^n fractional factorial designs,the treatment and block split wordlength patterns of the combined blocked design under a general foldover plan are defined. They are proved to be independent of the choice of the block foldover plans.It is shown that, for an initial unblocked design,a pair of blocking and foldover plans has minimum aberration for the combined blocked design if and only if the foldover plan has minimum aberration without consideration of blocking plans and the blocking plan has minimum aberration without consideration of foldover plans.
机构地区 新乡学院数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第4期627-635,共9页 Acta Mathematica Scientia
关键词 最优区组方案 最优折叠反转方案 最小混杂 裂区字长型 Optimal blocking plans Optimal foldover plans Minimum aberration Split Wordlength pattern
  • 相关文献

参考文献19

  • 1Box G E P,Hunter J S. 2k-p fractional factorial designs[J].Thchnometrics,1961.311351,449-458.
  • 2Box G E P,Hunter W G,Hunter J S. Statistics for Experiments[M].New York:wiley,1978.
  • 3Montgomery D C. Design and Analysis of Experiments (5th ed)[M].New York:wiley,2001.
  • 4Neter J,Kutner M H,Nachtsheim C J,Wasserman W. Applied Linear Statistical Models (4th ed)[M].Chicago:Richard D Irwin,1996.
  • 5Wu C F J,Hamada M S. Experiments Planning Analysis,and Parameter Design Optimization[M].New York:wiley,2000.
  • 6Montgomery D C,Runger G C. Foldovers of 2k-p resolution IV experimental designs[J].Journal of Quality Technology,1996.446-450.
  • 7Li W,Lin D K J. Optimal foldover plans for two-level fractional factorial designs[J].Technometrics,2003,(2):142-149.doi:10.1198/004017003188618779.
  • 8Li W,Lin D K J,Ye K Q. Optimal foldover plans for two-level nonregular orthogonal designs[J].Technometrics,2003,(4):347-351.doi:10.1198/004017003000000177.
  • 9Fang K T,Lin D K J,Qin H. A note on optimal foldover design[J].Statistics & Probability Letters,2003.245250.
  • 10Ye K,Li W. Some properties for blocked and unblocked foldovers of 2k-p designs[J].Statistica Sinica,2003.403-408.

二级参考文献11

  • 1Box G E P, Hunter J S. 2^k-p fractional factorial designs. Thchnometrics, 1961, 3: 311-351, 449- 458.
  • 2Box G E P, Hunter W G, Hunter J S. Statistics for Experiments. New York: Wiley, 1978.
  • 3Montgomery D C. Design and Analysis of Experiments, 5th ed. New York: Wiley, 2001.
  • 4Neter J, Kutner M H, Nachtsheim C J, Wasserman W. Applied Linear Statistical Models, 4th ed. Chicago: Richard D Irwin, 1996.
  • 5Wu C F J, Hamada M S. Experiments Planning, Analysis, and Parameter Design Optimization. New York: Wiley, 2000.
  • 6Montgomery D C, Runger G C. Foldovers of 2^k-p resolution IV experimental designs. J Qual Technol, 1996, 28:446- 450.
  • 7Li W, Lin D K J. Optimal foldover plans for two-level fractional factorial designs. Technometrics, 2003, 45:142- 149.
  • 8Li W, Lin D K J, Ye K Q. Optimal foldover plans for two-level nonregular orthogonal designs. Techno- metrics, 2003, 45:347-351.
  • 9Fang K T, Lin D K J, Qin H. A note on optimal foldover design. Statist Probab Lett, 2003, 62:245- 250.
  • 10Ye K, Li W. Some properties for blocked and unblocked foldovers of 2^k-p designs. Statist Sinica, 2003, 13:403 -408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部