期刊文献+

主动约束层阻尼板结构动力学建模 被引量:5

Research on Dynamic Modeling of Active Constrained Layer Damping Treatment
下载PDF
导出
摘要 基于板壳理论、压电理论和粘弹性理论,对由基板层、粘弹阻尼层和压电约束层组成的3层复合主动约束层阻尼板结构的动力学建模进行了研究。在对主动约束层阻尼(active constrained layer damping,简称ACLD)板结构进行有限元划分的基础上,建立7自由度平面矩形ACLD板单元,利用拉格朗日方法建立结构动力学方程。建模过程中利用GHM方法描述粘弹性材料(viscoelastic material,简称VEM)的本构关系,与有限元法结合并极大简化粘弹结构的力学建模问题。对经典算例的计算与仿真表明,提出的建模方法是准确的,ACLD结构能够有效增加粘弹阻尼层的剪切变形,增大振动能量耗散,控制结构振动。 The technology of active constrained layer damping can realize the active control of the structure vibration, it fully combines the advantages of active control and passive damping that the advantages of small added mass, wide frequency control, fast response of active control and the properties of safe and reliable of passive damping. Based on the plate and shell theory, piezoelectric theory and viscoelastic theory, this paper take a research of dynamic modeling for the active constrained damping layer which is a three composed layer with base layer, viscoelastic layer and piezoelectric layer. On the base of finite element division, establish a seven degree of freedom of the rectangle element of ACLD plate, and get the dynamic equation of structure by using the Lagrange method. During the modeling, use of GHM method to describe the geometric deformation of VEM can effectively integrate with the FEM and greatly simplify the mechanical modeling problem. Finally, the results of calculation and simulation of classic example show that the modeling method presented in this paperis accurate, ACLD structure can effectively increase the shear deformation of the viscoelastic layer and increase the dissipation of vibration energy for controlling the vibration.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第S1期198-201,231,共5页 Journal of Vibration,Measurement & Diagnosis
关键词 主动约束层阻尼 有限元法 GHM模型 动力学建模 active constrained layer damping,finite element method(FEM),GHM,dynamic modeling
  • 相关文献

参考文献2

二级参考文献15

  • 1刘天雄 华宏星 陈兆能等.航空学报,2001,23(2):30-30.
  • 2RAO M D. Recent applications of viscoelastic dampingfor noise control in automobiles and commercial airplanes [J]. Journal of Sound and Vibration , 2003, 262(3) : 457-474.
  • 3VASQUES C M A, RODRIGUES J D. Combined feedback/feed forward active control of vibration of beams with ACLD treatments: Numerical simulation [J]. Computers and Structures, 2008, 86 (3/5) 292- 306.
  • 4KUMAR N, SINGH S P. Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations [J]. Materials and Design,2009,30(10) :4162 -4174.
  • 5RAY M C, SHIVAKUMAR M C. Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiberreinforced composite[J]. Thin Walled Structures 2009, 47(2) :178-189.
  • 6GANDHI F, MUNSKY B. Comparison of damping augmentation mechanisms with position and velocity feedback in active constrained layer Treatments[J].Journal of Intelligent Material Systems and structures. 2002, 13(5) :317-326.
  • 7DAMAREN C J, OGUAMANAM D C D. Vibration control of spacecraft box structures using collocated piezo-actuator /sensor [J]. Journal of Intelligent Material Systems and Structures, 2004, 15 ( 5 ): 369-374.
  • 8BADRE-ALAM A, WANG K W, GANDHI F. Optimization of enhanced active constrained layer treatment on helicopter flex-beams for aeromechanical stability augmentation [J]. Journal of Smart Materials and Structures, 1999(8): 182-196.
  • 9HERDIC P, BAZ A, HOUSTON R. Structural acoustics and active constrained layer damping of a full scale fuselage section: An experimental approach[C]// International ASME Congress, November 16 21, 1997, Dallas, TX. NCA, 1997:43-54.
  • 10KWAK S K, WASHINGTON G, YEDARAI.LI R. Active and passive vibration control of landing gear components [C]// The 1999 ASME Mechanical Engineering Congress and Exposition ( IMECE'99), November 14- 19, 1999, Nashville, Tennessee, USA. Nashville, Tennessee: [s. n.], 1999:269- 275.

共引文献12

同被引文献42

  • 1杨雪,王源升,朱金华,余红伟.多层阻尼复合结构阻尼性能[J].复合材料学报,2005,22(3):175-181. 被引量:21
  • 2Song Yong, Sun Dagang, Zhang Xin, et al. An analytical solution to steady-state temperature distribution of N-layer viscoelastic suspensions used in crawler vehicles[J]. International Journal of Heavy Vehicle Systems, 2012,19(3): 281-298.
  • 3Yan Bijuan, Sun Dagang, Song Yong. Stress- deformation-temperature behavior of a rolling segmented constrained layer damped bogie wheel[J]. Noise Control Engineering, 2012, 60(6): 655-664.
  • 4Geethamma V G, Asaletha R, Kalarikkal N, et al. Vibration and sound damping in polymers[J]. Resonance, 2014, 19(9): 821-833.
  • 5Gattulli V, Potenza F, Lepidi M. Damping performance of two simple oscillators coupled by a viscoelastic connection[J]. Journal of Sound and Vibration, 2013, 332(26): 6934-6948.
  • 6Lei Y, Adhikari S, Friswell M I. Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams[J]. International Journal of Engineering Science, 2013, 66(5): 1-13.
  • 7Chindam C, Venkata K C, Balasubramaniam K, et al. Thermomechanical response of metals: Maxwell vs. Kelvin-Voigt models[J]. Materials Science and Engineering, 2013, 560(2): 54-61.
  • 8Dall\'Asta A, Ragni L. Nonlinear behavior of dynamic systems with high damping rubber devices[J]. Engineering Structures, 2008, 30(12): 3610-3618.
  • 9Schmidt A, Gaul L. On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems[J]. Mechanics Research Communications, 2006, 33(1): 99-107.
  • 10Zopf C, Hoque S E, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98(1): 287-296.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部