期刊文献+

Interplay of autophagy and innate immunity in Crohn's disease: A key immunobiologic feature 被引量:6

Interplay of autophagy and innate immunity in Crohn's disease: A key immunobiologic feature
下载PDF
导出
摘要 Crohn's disease representing a clinical phenotype of inflammatory bowel disease is a polygenic immune disorder with complex multifactor etiology. Recent genome-wide association studies of susceptibility loci have highlighted on the importance of the autophagy pathway, which previously had not been implicated in disease pathology. Autophagy represents an evolutionarily highly conserved multi-step process of cellular self-digestion due to sequestration of excessive, damaged, or aged proteins and intracellular organelles in double-membranous vesicles of autophagosomes, terminally self-digested in lysosomes. Autophagy is deeply involved in regulation of cell development and differentiation, survival and senescence, and it also fundamentally affects the inflammatory pathways, as well as the innate and adaptive arms of immune responses. Autophagy is mainly activated due to sensors of the innate immunity, i.e., by pattern recognition receptor signaling. The interplay of genes regulating immune functions is strongly influenced by the environment, especially gut resident microbiota. The basic challenge for intestinal immune recognition is the requirement of a simultaneous delicate balance between tolerance and responsiveness towards microbes. On the basis of autophagy-related risk genetic polymorphisms (ATG16L1, IRGM , NOD2 , XBP1 ) impaired sensing and handling of intracellular bacteria by innate immunity, closely interrelated with the autophagic and unfolded protein pathways seem to be the most relevant immunobiologic events. Autophagy is now widely considered as a key regulator mechanism with the capacity to integrate several aspects of Crohn's disease pathogenesis. In this review, recent advances in the exciting crosstalk of susceptibility coding variants-related autophagy and innate immunity are discussed. Crohn's disease representing a clinical phenotype of inflammatory bowel disease is a polygenic immune disorder with complex multifactor etiology. Recent genome-wide association studies of susceptibility loci have highlighted on the importance of the autophagy pathway, which previously had not been implicated in disease pathology. Autophagy represents an evolutionarily highly conserved multi-step process of cellular self-digestion due to sequestration of excessive, damaged, or aged proteins and intracellular organelles in double-membranous vesicles of autophagosomes, terminally self-digested in lysosomes. Autophagy is deeply involved in regulation of cell development and differentiation, survival and senescence, and it also fundamentally affects the inflammatory pathways, as well as the innate and adaptive arms of immune responses. Autophagy is mainly activated due to sensors of the innate immunity, i.e., by pattern recognition receptor signaling. The interplay of genes regulating immune functions is strongly influenced by the environment, especially gut resident microbiota. The basic challenge for intestinal immune recognition is the requirement of a simultaneous delicate balance between tolerance and responsiveness towards microbes. On the basis of autophagy-related risk genetic polymorphisms (ATG16L1, IRGM , NOD2 , XBP1 ) impaired sensing and handling of intracellular bacteria by innate immunity, closely interrelated with the autophagic and unfolded protein pathways seem to be the most relevant immunobiologic events. Autophagy is now widely considered as a key regulator mechanism with the capacity to integrate several aspects of Crohn's disease pathogenesis. In this review, recent advances in the exciting crosstalk of susceptibility coding variants-related autophagy and innate immunity are discussed.
机构地区 [
出处 《World Journal of Gastroenterology》 SCIE CAS 2013年第28期4447-4454,共8页 世界胃肠病学杂志(英文版)
关键词 Crohn’s disease INNATE immunity AUTOPHAGY GENES AUTOPHAGY GUT MICROBIOTA Crohn's disease Innate immunity Autophagy genes Autophagy Gut microbiota
  • 相关文献

参考文献1

二级参考文献2

共引文献27

同被引文献59

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部