期刊文献+

新型大涡数值模拟亚格子模型及应用 被引量:4

A New Subgrid Eddy Viscosity Model and Its Application
下载PDF
导出
摘要  基于湍流大小尺度间动量输运的结构函数方程,提出了一种新的湍流大涡模型(LES)亚格子涡粘模式.新亚格子涡粘系数正比于纵向速度增量的扭率,它表征大小尺度湍流间的能量输运和耗散之比.新模式通过各向同性湍流直接数值模拟数据库的检验,并用于槽道湍流的大涡模拟计算,将所得结果与DNS结果进行了比较. A new subgrid eddy viscosity model is proposed. The new subgird eddy viscosity is proportional to the skewness of longitudinal velocity increment, which characterizes the transportation of turbulent momentum bteween resolved and unresolved turbulence. The new model is verified by a DNS data bank of isotropic turbulence, and has been applied to the turbulent channel flow. The results show to be in good agreement with DNS ones.
出处 《计算物理》 CSCD 北大核心 2004年第3期289-293,共5页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10272065 10232020) 中法实验室(LIAMA)及清华大学基础研究基金(JC2002207)资助项目
关键词 流体力学 大涡数值模拟 亚格子模式 涡粘性 结构函数 湍流 large eddy simulation subgrid model subgrid eddy viscosity structure function
  • 相关文献

参考文献9

  • 1Smargorinsky. General circulation experiments with porimitive equation [J] .Monthly Weather Review, 1963,91 -99.
  • 2Bardina J, et al.Improved subgrid model for large-eddy simulation [R] .AIAA paper, 1980,80- 1357.
  • 3Gemano M, et al. A dynamic subgrid-scale eddy viscosity model [J]. Physics of Fluids, 1991, A3:1760.
  • 4Lesieur M. Turbulence in Fluids [M]. Kluwer Academic Publishers, 1997.
  • 5Hill R J. Applicability of Kolmogorov's and Monin's equation of turbulence [J]. Journal of Fluid Mechanics, 1997,353:67 -81.
  • 6Zhou H B, et al. Dependence of turbulent scalar flux on molecular Prandtl number [ J]. Physics of Fluids,2002,14:2388 - 2394.
  • 7Moser R D. Direct numerical simulation of turbulent channel flow up to Rer = 590 [J]. Physics of Fluids, 1999,8: 1076- 1088.
  • 8Xu C X, et al. Origin of high kurtosis in viscous sublayer [J]. Physics of Fluids, 1996,8:1938- 1942.
  • 9Yaglom A M. On the local structure of a temperature field in a turbulent flow [ J]. Dokl Acad Nauk SSSR, 1949,69:743 -746.

同被引文献21

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部