期刊文献+

基于顶点分类的曲面三角网格模型自适应光顺研究 被引量:4

Research on Adaptive Smoothing of Triangular Meshes Based on Vertice Classification
下载PDF
导出
摘要 逆向工程中由测量数据得到的三角网格模型往往含有大量的噪声、扰动及不规则三角片 ,需对其进行光顺处理 ,以满足后续处理的使用要求。本文首先提出了一种新的网格模型顶点法矢计算公式 ,该公式采用网格模型中三角片面积与顶角角度综合加权 ,可同时反映三角片面积与顶角角度对顶点法矢的影响。在此基础上 ,对网格模型顶点进行了分类处理 ,提出了能够反映网格顶点特征性质的顶点势概念。势为 1的点为特征点 ,势为 0的点为普通点。最后 ,提出了一种新的自适应曲面三角网格模型光顺方法 ,综合了普通拉普拉斯光顺法与平均曲率法的优点。在该方法中 ,顶点调整方向为拉普拉斯光顺矢量在被调整顶点切平面上的分量与该点法矢的加权合成 ;顶点调整幅度根据顶点类别的不同而不同 ,特征点的调整幅度小 ,普通点的调整幅度大 ,从而可保护原有特征。实例表明 ,与现有方法相比 ,该方法在有效去除噪声 ,匀化三角片的同时 。 A new formula for the calculation of mesh vertex normal vector is presented. Utilizing the weight combination of areas and vertex angles of correlated mesh triangles, the formula can represent the affects of the triangle area and vertex angles. And then, a new concept and the vertex power are put forword. Based on this new concept, mesh vertices are classified. Vertices of power 1 are classified as feature ones, and power 0 common ones. Finally, a novel adaptive mesh smoothing method is devoloped. The method maintains the merits of Laplacian and mean curvature methods. In smoothing process, the vertex is regulated in the direction of combination of Laplacian smoothing and mean curvature smoothing vectors, so mesh triangles can be uniformed. Unlike the uniform displacement in Laplacian or mean curvature methods, in the method, the regulating displacements vary with the category of vertices. For feature vertices the displacement is small and for common ones the displacement is big. After smoothing process, features of the original mesh can be perfectly preserved. Compared with existing methods, the method can efficiently eliminate noises and uniform triangles and preserve features of the original meshes.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第4期471-476,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金 ( 0 1 H5 2 0 5 1 )资助项目 教育部优秀青年教师教学科研奖励计划
关键词 三角网格模型 顶点法矢 顶点分类 顶点势 自适应光顺 逆向工程 triangular meshes vertex normal vector classification of vertices vertex power adaptive smoothing
  • 相关文献

参考文献7

  • 1Kobbelt L,Campagna S,Vorsatz J,et al.Interactive multi-resolution modeling on arbitrary meshes[A].Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH [C].Orlando,1998.105~114.
  • 2Wood Z J,Desbrun M,Schroder P,et al.Semi-regular mesh extraction from volumes[A].Proceedings of IEEE Visualization 2000 [C].Salt Lake City,2000.275~282.
  • 3Taubin G.A signal processing approach to fair surface design [A ].Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH [C ].Los Angeles,California,1995.351~358.
  • 4Taubin G,Zhang T,Golub G.Optimal surface smoothing as filter design[A].Proceedings of the European Conference on Computer Vision[C].UK:Cambridge,2000.283~292.
  • 5Desbrun M,Meyer M,Schroder P,et al.Implicit fairing of irregular meshes using diffusion and curvature flow[A].Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH[C].Los Angeles,California,1999.317~324.
  • 6Desbrun M,Meyer M,Schroder,et al.Anisotropic feature-preserving denoising of height fields and bivariate data[A].Proceedings of the 9th International Meshing Roundtable [ C ].New Orleans,Louisiana,2000.145~152.
  • 7Guskov I,Sweldens W,Schroder P.Multiresolution signal processing for meshes [A].Proceedings of SIGGRAPH99 [C].Los Angeles,California,1999.325~334.

同被引文献58

  • 1胡国飞,彭群生.基于顶点预测的特征保持网格光顺算法[J].浙江大学学报(工学版),2004,38(12):1535-1539. 被引量:11
  • 2陆国栋,许鹏,温星.基于向量夹角的三角网格模型简化算法[J].工程设计学报,2005,12(2):124-128. 被引量:10
  • 3董韵涵,杨万麟.改进最优聚类中心雷达目标识别法[J].电子科技大学学报,2006,35(2):183-185. 被引量:2
  • 4郝大功,闫光荣.Z-Map模型精简技术的研究[J].工程图学学报,2007,28(1):134-138. 被引量:5
  • 5肖春霞 李辉 缪永伟等.基于非局部几何信号的点模型去噪算法.软件学报,2006,17:110-119.
  • 6KLAUS R M, SEBASTIAN M. An introduction to kernel- based learning algorithms[J]. IEEE Transactions on Neural Networks,2001,12(2) :180-201.
  • 7FERNANDO P C, OLIVIER B. Kernel methods and their potential use in signal processing[J]. IEEE Signal Processing Magazine, 200,1,21 (3) :57-65.
  • 8COLORNI A, DORIGO M, MANICZZO V, et al. Distribu- ted optimization by ant colonies[C]// Proceedings of the 1st European Conference on Artificial Life. Amsterdam, the Netherlands: Elsevier Publishing, 1991 : 134-142.
  • 9SCHLKOPF B, MIKA S, BURGES C, et al. Input space versus feature space in kernel2 based methods[J]. IEEE Transactions on Neural Networks, 1999,10(5) : 1000-1017.
  • 10GIROLAMI M. Mercer kernel based clustering in feature space[J]. IEEE Transactions on Neural Networks, 2002,13 (3):780-784.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部