期刊文献+

基于多尺度下AR(P)耦合预测模型的应用研究 被引量:4

Study on AR(P) Hybrid Model Based on Analysis of Multi-scale
下载PDF
导出
摘要 基于多尺度分析理论,运用Mallat算法和Daubechies小波,把时间序列分解为比原始序列更单一的细节和概貌部分,并利用AR(P)模型能反映时间序列中邻近时刻间联系的特性,对序列分解后的部分进行拟合与预测,然后再由多尺度分析中的重构方法进行序列重构,由此建立耦合的预测模型。通过黄河青铜峡270多年(1724~1997)年径流时间序列的建模及验证,表明拟建的耦合模型与传统单一模型的预测精度相比,由50%提高到90%,可用于实际需要。 Respect to the characteristic of the Auto-regressive model AR(P) in different time-scale, a new hybrid model of prediction for time series is proposed based on the analysis of multi-scale. Firstly, using the method of multi-scale decomposition by the algorithm of Mallat and the wavelet of Daubechies, a time series is decomposed into two parts: detail and approximate. Secondly, two different models, which are expressed by two AR(6) models (AR1(6) and AR2(6)), are developed respectively for the two decomposed parts, and new predicted data could be got from the two models. Thirdly, by using the restructuring method of multi-scale of the Mallat and the Daubechies, the final predicted time series are obtained based on the predicted data from the two models. In the case study of annual runoff time series (1724-1997) at Qingtongxia station in Yellow River, the new hybrid model had advantages over the traditional statistic model of the AR(P) in predicted qualification-rate (the qualification-rate of the new model in the study is 90% while the traditional AR(P) is only 50%). The results show that new hybrid model has feasibility in the prediction of time series.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 2004年第5期16-19,共4页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学重点基金项目(50239050) 国家自然科学基金项目(50249024)和(40271024)
关键词 多尺度分析 Maual算法 Daubechics小波 AR(P)模型 耦合预测 天然年径流 Algorithms Forecasting Mathematical models Runoff
  • 相关文献

参考文献8

  • 1Zhang Shaowen, Ding Jing, Liao Jie,et al.Analysis of natural annual flow time series in the upper reach of the yellow river based on wavelet transform[J].Journal of University ( Engineering Science Edition),2004,36(3):32~37.
  • 2Heng Tong,Wang Wensheng, Li Lading. Combined stochastic models based on wavelet transform and its application to stochastic modelling of runoff time series[J].International Journal Hydroelectric Energy, 2002,20(1):15~17.[衡彤,王文圣, 李拉丁. 基于小波变换
  • 3M Holschneider, R Kronland-Martinet, J Morlet, et al.A Real-time algorithm for signal analysis with the help of the wavelet transform[A]. Wavwlets,Time-frequency Methods and Phase Space, pages 289~297. Springer-Verlag, Berlin, 1989.
  • 4葛敬霞,王国峰.AR模型在数控车削在线监测中的应用研究[J].机械设计与制造,2002(5):98-99. 被引量:1
  • 5Xie Hong, Cheng Haozhong, Zhang Guoli,et al.Sparse number AR model for load forecast[J]. Journal of North China Electric Power University, 2004, 31(1):29-32.[谢宏, 程浩忠,张国立,等. 负荷预测的线性稀疏数AR预测模型[J]. 华
  • 6Li Xianbin, Ding Jing, Li Houqiang. The combination forecasting using artificial neural network based on wavelet transformed sequences[J]. Journal of Hydraulic Engineering,1999,(2):1-4.[李贤彬,丁晶, 李后强.基于子波变换
  • 7Stéphane Mallat.A Wavelet Tour of Signal Processing (Second Edition)[M].U S A, Academic Press, 1999.
  • 8丁晶 刘权授.随机水文学[M].北京:中国水利水电版,1977..

二级参考文献1

  • 1S. M. Pandit,A Data Dependent Systems Strategy of on- line Tool Wear Sening. ASME Journal of Engineering for lndustry.1982.8.

共引文献2

同被引文献102

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部