摘要
在复杂工业生产中 ,影响生产的因素非常多 ,使得用于软测量的神经网络模型极其复杂 .针对这个问题 ,利用主元分析法 (PCA)将影响因素重组 ,在此基础上 ,提出了一种多神经网络 (PCA- MNN)模型 .介绍了 PCA- MNN的结构及学习算法 ,并将其应用于氧化铝高压溶出过程中苛性比值及溶出率的软测量 ,利用现场实际运行数据进行仿真 ,结果表明 PCA-
In complex industry process, the neural network model for soft sensing is very complex because that there are a large number of factors will influence the industry process. To this question, principal component analysis (PCA) method was used to reorganize the factors. On this basis, a multiple neural network (PCA MNN) model is proposed. The structure and algorithm of PCA MNN is introduced. The PCA MNN model was applied in the process of high pressure digestion of alumina, simulation result show that PCA MNN model can sense ratio of soda to aluminate and leaching rate online effectively.
出处
《小型微型计算机系统》
CSCD
北大核心
2004年第10期1781-1784,共4页
Journal of Chinese Computer Systems
基金
国家 8 63高技术计划项目 ( 2 0 0 1AA4110 40 )资助
国家"973"重点基础项目 ( 2 0 0 2 CB3 12 2 0 0 )资助
关键词
主元分析
多神经网络
软测量
苛性比值
溶出率
principal component analysis (PCA)
multiple meural networks (MNN)
soft sensing
ratio of soda to aluminate (RSA)
leaching rate (LR)