摘要
An four wheel steering (4WS) feedback control system that simultaneously achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics. Quantitative feedback theory (QFT) is offered as the main tool for designing the control law. Inverted decoupling is also employed to make multivariable quantitative feedback design easier. Various nonlinear analyses are carried out and show that the proposed control system is a robust decoupling controller which not only makes body sideslip angle and yaw rate of the vehicle track the desired reference input signals respectively, but also satisfies the requirement of robustness for the control system. The results also indicate that the control system can make it available to realize ideal lateral steering dynamics tracking for vehicles.
An four wheel steering (4WS)feedback contrlol system that simultanelusly achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics.Quantitative feedback theory (QFT)is offered as the main tool for designing the control law.Inverted decoupling is also employed to make multivariable quantitative feedback design easier.Varilus nonlinear analyses are carried ut and show that the proposed comtrol system is a robust decoupling controller which not only makesd body sideslip angle and yaw rate of the vehicle track the desired reference input sigmals respectively,byt also satisfies the rrequirement of robustness for the control system.The results also indicate that the contral system can make it available to realize ideal lateral steering dynamics tracking for vehicles.