期刊文献+

有关正六边形点阵结构数字图像的研究 被引量:2

Research on Hexagonal Sampled Digital Images
下载PDF
导出
摘要 传统连续图像信号的采样过程采用的是矩形点阵结构。当连续图像信号的频带处于一个圆形区域之内时 ,正六边形点阵结构的采样密度比矩形点阵结构的采样密度要降低 13.4 %。但目前图像输入输出设备只支持矩形点阵结构的数字图像 ,所以首先讨论了满足 Nyquist采样定理的正六边形点阵结构的采样矩阵 (空间采样间隔 ) ,及矩形点阵结构数字图像和正六边形点阵结构数字图像之间的转换。另一方面由于正六边形点阵结构的数字图像是不可分离信号 ,这给图像处理造成许多的不便。为此提出了一种基于可分离滤波器阵列的图像分解方法 ,降低了计算复杂度 ,得到类似矩形图像小波变换所得的多尺度分解结构 ,并给出重构图像的实验结果。 Traditionally, the most commonly used sampling lattice in image processing systems is the rectangular sampling lattice. However, when the signal is a circularly band-limited, the minimum sampling density for a hexagonal sampling lattice is 13.4% less than that for a rectangular sampling lattice. This result is one of the most attractive reasons for considering the hexagonal sampling lattice as an alternative to the rectangular lattice. Almost all the input/output devices only support the rectangular sampled digital images, so the transformation between the hexagonal sampling lattice and the rectangular sampling lattice is discussed in this paper, and the hexagonal sampling matrix satisfied Nyquist Sampling Theorem is given. Moreover hexagonal sampled digital images are non-separable signals. It is difficult to process a non-separable signal directly. In this paper, a multiresolution decomposition of hexagonal sampled images based on a separable filter bank is proposed. A multi-scale decomposition structure is obtained with low computation complexity, and the reconstructed image is presented.
作者 陆系群 陈纯
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第6期722-728,共7页 Journal of Image and Graphics
基金 教育部回国人员科研启动基金资助
关键词 图像信号 矩形点阵结构 正六边形点阵结构 可分离滤波器阵列 多分辨率分解 hexagonal sampling lattice, rectangular sampling lattice, separable filter banks, multiresolution decomposition
  • 相关文献

参考文献9

  • 1Hubel D H. Eye, Brain and Vision[M]. New York: Scientific American Books, 1988.
  • 2Dudgeon D E, Mersereau R M. Multidimensional Digital Signal Processing[M]. Englewood Cliffs : Prentice Hall, New Jersey,USA, 1984.
  • 3Rosenthal J. Filters and Filter Banks for Hexagonal Sampled Signals[D]. USA: Georgia Institute of Technology 2001.
  • 4Chen T, Vaidyanathan P P. Multidimensional multirate filters and filter banks derived from one-dimensional filters [J]. IEEE Transactions on Signal Processing, 1993, 41(5): 1749-1765.
  • 5Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: theory and design [J]. IEEE Transactions on Signal Processing, 1992. 40(4):882-893.
  • 6Shah I A, Kalker A A C. Theory and design of multidimensional QMF sub-band filters from l-D filters and polynomials using transforms [J]. IEE Proceedings on Communications, Speech and Vision, 1993, 140(1):67-71.
  • 7Shapiro J M. Adaptive McClellan transformations for quincunx filter banks [J]. IEEE Transactions on Signal Processing. 1993,42(3) : 642-648.
  • 8Croisier A, Esteban D, Galand C. Perfect channel splitting by use of interpolation/ decimation/tree decomposition techniques[A]. International Conference on Information Sciences and Systems[C], Patras,Greece, 1976:443-446.
  • 9Woods J W, O'Neil S D. Subband coding of images [J]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1986.34(5):1278-1288.

同被引文献21

  • 1胡晓宏,郭祎华,刘德华,李益民.六角形网格细分曲面算法介绍[J].计算机应用与软件,2004,21(8):116-118. 被引量:5
  • 2何援军.图形变换的几何化表示——论图形变换和投影的若干问题之一[J].计算机辅助设计与图形学学报,2005,17(4):723-728. 被引量:20
  • 3孙家广.计算机图形学[M].北京:清华大学出版社,2001..
  • 4Malik J.Interpreting line drawings of curved objects[J].International Journal of Computer Vision,1987,1(1):73-103
  • 5Falk G.Interpretation of imperfect line data as a three-dimensional scene[J].Artificial Intelligence,1972,3(2):101-144
  • 6Sugihara K.Machine Interpretation of line drawings[M].Massachusetts:The MIT Press,1986
  • 7Chakravarty I.A generalized line and junction labeling scheme with applications to scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):202 -205
  • 8Trytten D A,Tuceryan M.The construction of labeled line drawings from intensity images[J].Pattern Recognition,1995,28(2):171-198
  • 9Golay M J E.Hexagonal parallel pattern transformations[J].IEEE Transactions on Computers,1969,C-18(8):733-740
  • 10Deutsch E S.Thinning algorithms on rectangular,hexagonal and triangular arrays[R].Maryland:Maryland University,1972

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部