期刊文献+

碳纤维电化学氧化表面处理效果的动态力学热分析研究 被引量:26

DMTA STUDY ON ELECTROCHEMICAL OXIDATION EFFECT OF CARBON FIBERS SURFACE
下载PDF
导出
摘要  利用动态力学热分析(DMTA)、扫描电镜(SEM)、X射线光电子能谱(XPS)对聚丙烯腈基(PAN)碳纤维电化学氧化表面处理效果进行了研究。研究结果表明,DMTA谱图中经电化学氧化处理的碳纤维增强树脂基复合材料(CFRP)其损耗角正切(tanδ)较未处理的降低30%,玻璃化温度(Tg)与tanδ峰值的变化可以有效地表征PAN基碳纤维表面处理的效果。这一结论与SEM观察CFRP断口形貌的结果相符。经定量计算出的界面粘结参数A和α与CFRP的层间剪切强度(ILSS)所反映的碳纤维与树脂间界面粘结效果是一致的。同时,XPS表面化学分析表明,经电化学氧化处理后的碳纤维表面羟基含量提高55%及活性碳原子数增加18%,采用适当的处理条件可使CFRP的ILSS提高20%以上。 Dynamic mechanical thermal analysis (DMTA), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to study the surface of polyacrylonitrile (PAN)-based carbon fiber (CF) treated by electrochemical oxidation. The results show that the loss tangent (tanδ) of treated carbon fibers reinforced epoxy declines to 30% compared with the untreated in DMTA chart, and the change of glass transition temperature (Tg) and the peak of tanδ can availably characterize the electrochemical treatment effect of carbon fiber surface, which corresponds to SEM analysis. Quantitative analysis results reveal that the interfacial adhesion parameter A and α can reflect the interfacial bonding effect between carbon fibers and epoxy, which is compatible with what is reflected by the ILSS value of CFRP. XPS analysis indicates that the hydroxyl group content and active carbon atom of the treated CF are higher than those of the untreated CF, which is improved to 55% and 18% respectively. Appropriate oxidative conditions can make interlaminar shear strength (ILSS) increase over 20%.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2004年第4期40-44,共5页 Acta Materiae Compositae Sinica
基金 国家自然科学基金项目(50172004)
关键词 PAN 碳纤维 电化学氧化 动态力学热分析 环氧树脂 界面粘结 ILSS Epoxy resins Glass transition Polyacrylonitriles Scanning electron microscopy X ray photoelectron spectroscopy
  • 相关文献

参考文献10

二级参考文献19

  • 1黄玉东.复合材料界面强度原位表征技术与应用研究[M].哈尔滨:哈尔滨工业大学,1993..
  • 2笪有仙 罗爱琴 等.碳纤维表面性能的研究[J].复合材料学报,1987,4(4):33-37.
  • 3[1]Perepelkin K E, Machalaba N N. Armos-the russian high-performance fiber: Comparison with other P-aramid fiber types [J]. Chemical Fibers International,, 1999, 49(3):211-214.
  • 4[2]Menon N, Blum D Frank, Dharani L R. Use of titanate coupling agent in kevlar-phenolic composites [J]. Journal of Applied Polymer Science, 1994, 54(1): 113-123.
  • 5[3]Tarantili P A, Andreopoules A G. Mechanical properties of epoxies reinforced with Chloride-treated aramid fibers [J]. Journal of Applied Polymer Science, 1997, 65(2): 267-275.
  • 6[4]Benrashid Ramazan, Tesoro C Giuliana. Effect of surface-limited reaction on the properties of kevlar fibers [J]. Textile Research Journal, 1990, 60(6):334-344.
  • 7[5]Chou C T, Penn L S. Chemical bonding and physical interaction by attached chains at the fiber-matrix interface [J]. Journal of Adhesion, 1991, 36(2):125-137.
  • 8[6]Sheu G S, Shyu S S. Surface modification of kevlar 149 fibers by gas plasma treatment. Part Ⅰ: morphology and surface characterization [J]. Journal of Adhesion Science and Technology, 1994, 8(5): 531-542.
  • 9[7]David A Biro, Gerald Pleizier, Yves Deslandes. Application of the microbond technique Ⅳ. Improved fiber-matrix adhesion by RF plasma treatment of organic fiber [J]. Journal of Applied Polymer Science, 1993, 47(5): 883-894.
  • 10[8]Masaru Mori, Yoshikimi Uyama, Yoshito Ikada. Surface modification of aramid fibre by graft polymerization [J]. Polymer, 1994, 35(24): 5336-5341.

共引文献119

同被引文献291

引证文献26

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部