摘要
The sedimentation of circular particles in a vertical channel filled withOldroyd ― B fluid was studied by an improved Distributed Lagrange Multiplier/fictitious domain(DLM) method. The sedimenting behaviors of two particles are presented firstly, which shows that,when the particles are dropped in a viscoealstic fluid, the stable configuration is the one wherethe particles are aligned parallel to the flow direction when the Mach number Mis less than 1 andthe elasticity number E is greater than 1. This agrees well with the known experimental in Ref. [1]and simulation results in Ref. [2]. Our simulations also show that, as in Newtonian fluid, thesedimentation of the particles will be accelerated due to the .interaction between particles in aviscoealstic fluid.
The sedimentation of circular particles in a vertical channel filled withOldroyd ― B fluid was studied by an improved Distributed Lagrange Multiplier/fictitious domain(DLM) method. The sedimenting behaviors of two particles are presented firstly, which shows that,when the particles are dropped in a viscoealstic fluid, the stable configuration is the one wherethe particles are aligned parallel to the flow direction when the Mach number Mis less than 1 andthe elasticity number E is greater than 1. This agrees well with the known experimental in Ref. [1]and simulation results in Ref. [2]. Our simulations also show that, as in Newtonian fluid, thesedimentation of the particles will be accelerated due to the .interaction between particles in aviscoealstic fluid.
基金
ProjectsupportedbytheNationalNaturalScienceFoundationofChina (GrantNo :10 10 2 0 17)andNationalNaturalScienceFoundationofZhejiangProvince(GrantNo :10 10 4 7)