摘要
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
基金
theMultidisciplineScientificResearchFoundationofHarbinInstituteofTechnology(GrantNo .HITMD .2 0 0 0 18)