摘要
Rain attenuation is the major problem for Ka-band satellite communications, and the fading due to rain can be well described by a lognormally distributed, first-order auto regressive model. Forward Error-control Coding (FEC) techniques can be used to reduce the effect of the rain attenuation, but the use of FEC causes a reduction in the bandwidth efficiency.In order to increase the bandwidth efficiency as well as maintain high link availability, an Adaptive Forward Error-control Coding (AFEC) scheme with rain fading prediction is proposed and analyzed in this paper. The results show that AFEC offers a good trade-off between link availability and bandwidth efficiency.
Rain attenuation is the major problem for Ka-band satellite communications, and the fading due to rain can be well described by a lognormally distributed, first-order auto-regressive model. Forward Error-control Coding (FEC) techniques can be used to reduce the effect of the rain attenuation, but the use of FEC causes a reduction in the bandwidth efficiency. In order to increase the bandwidth efficiency as well as maintain high link availability, an Adaptive Forward Error-control Coding (AFEC) scheme with rain fading prediction is proposed and analyzed in this paper. The results show that AFEC offers a good trade-off between link availability and bandwidth efficiency.