期刊文献+

ITERATIVE APPROXIMATION OF FIXED POINTS OF (ASYMPTOTICALLY) NONEXPANSIVE MAPPINGS 被引量:8

ITERATIVE APPROXIMATION OF FIXED POINTS OF (ASYMPTOTICALLY) NONEXPANSIVE MAPPINGS
下载PDF
导出
摘要 Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions. Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第4期402-408,共7页 高校应用数学学报(英文版)(B辑)
基金 Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOE P.R.C
关键词 Fixed point (asymptotically)nonexpansive mapping modified Ishikawa iteration process Frechet differentiable norm Opial condition. Fixed point,(asymptotically)nonexpansive mapping,modified Ishikawa iteration process,Frechet differentiable norm,Opial condition.
  • 相关文献

参考文献16

  • 1Bose,S.C.,Weak convergence to thefixed point of an asymptotically nonexpansive map,Proc.Amer.Math.Soc.,1978,68:305-308.
  • 2Goebel, K.and Kirk,W.A.,A fixed point theorem for asymptotically nonexpansivemappings,Proc.Amer.Math.Soc.,1972,35:171-174.
  • 3Opial,Z.,Weak convergence of the sequence of successive approximations fornonexpansive mappings,Bull.Amer.Math.Soc.,1967,73:595-597.
  • 4Passty,G.B.,Construction of fixed points for asymptotically nonexpansivemappings,Proc.Amer.Math.Soc.,1982,84:213-216.
  • 5Tan,K.K.and Xu,H.K.,The nonlinear ergodic theorem for asymptotically nonexpansivemappings in Banach spaces,Proc.Amer.Math.Soc.,1992,114:399-404.
  • 6Tan,K.K. and Xu, H.K.,A nonlinear ergodic theorem for asymptotically nonexpansivemappings,Bull.Austral.Math.Soc.,1992,45:25-36.
  • 7Xu,H.K.,Existence and convergence for fixed points of mappings of asymptoticallynonexpansive type,Nonlinear Anal.,1991,16:1139-1146.
  • 8Schu,J.,Weak and strong convergence to fixed points of asymptotically nonexpansivemappings,Bull.Austral.Math.Soc.,1991,43:153-159.
  • 9Mann,W.R.,Mean value methods in iteration,Proc.Amer.Math.Soc.,1953,4:506-510.
  • 10Tan,K.K. and Xu,H.K.,Fixed point iteration processes for asymptoticallynonexpansive mappings,Proc.Amer.Math.Soc.,1994,122:733-739.

同被引文献14

  • 1胡长松.Banach空间中渐近非扩张映射的不动点迭代[J].应用数学,2004,17(4):568-574. 被引量:2
  • 2陈汝栋,宋义生,周海云.连续伪压缩映射的黏滞迭代逼近方法[J].数学学报(中文版),2006,49(6):1275-1278. 被引量:4
  • 3陈汝栋,宋义生.Browder-Petryshyn型的严格伪压缩映射的粘滞迭代逼近方法[J].系统科学与数学,2006,26(6):651-657. 被引量:4
  • 4Benlong Xu, Muhammad Aslam Noor. Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces[J]. J Math Anal Appl,2002,267(2):444-453.
  • 5TAN K K, XU H K, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J]. J Math Anal Appl, 1993,178(2) :301-308.
  • 6Liu Qihou. Iterative sequences for asymptotically quasi-nonexpansive mappings with error member[J]. J Math Anal Appl,2001,259(1): 18-24.
  • 7Shih-shen chang, Yeol J echo. Haiyun Zhou, Iterative Methods for Nonlinear Operator Equations in Banach Spaces[M]. Copyright @ 2002 by Nova science Publishers Inc, 93-98,223-224,
  • 8Schu J, herative construction of fixed points of asymptotically nonexpansive mappings[J]. J Math Anal Appl, 1991,158(2):407-413.
  • 9Xu H K, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type [J]. Nonlinear Analysis, Theory, Methods & Application, 1991.16 (12): 1139-1146.
  • 10Rudong Chen, Yisheng Song, Haiyun Zhou. Convergence theorems for implicit iteration process for a finite family of cintinuous pseudocontractive mappings[J]. Journal of Mathematical Analysis and Application, Issue 2, 15 February,2006,314(2):701-709.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部