摘要
通过讨论实巴拿赫空间中级数的各种性质,刻划空间有限(无限)维特征。证明了每个无限维巴拿赫空间中都有一个闭子空间X,X中有级数Σxn满足条件(N),但其和域S({xn})非凸集。
In this article various properties of series in the real Banach space are discussed.It is proved that in every infinite dimensional Banach space Y there exists a closed subspace X and a series Σxn in X satisfying condition(N)(i.e.xn→0 and for every f∈X,f≠0,there exists a rearrangement{xπ(n)} of{xn}such that Σ f(xπ(n))converges conditionally) with S({xn}),the domain of sum of Σ xn,it is not convex.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1994年第3期23-29,共7页
Journal of Fujian Normal University:Natural Science Edition
关键词
巴拿赫空间
级数重排
收敛
Banach space,rearrangement of series,domain of sum of{x_n} .