摘要
In order to overcome the defects of air-agitated seed precipitation, such as scaring, liquid short-(circuiting,) the three-dimension flow fields with different structure are numerically simulated by computational fluid dynamics software. Euler/Euler approach was used to study the effects of structure on the flow field in the tank. Multi-fluid model, body-fitted coordinates and multi-block gird were adopted in the simulation. The simulating results are well consonant with the practical situations. The flow field is improved obviously when the flow velocity increases from (0.089m/s) to 0.1920.300m/s at the bottom of the optimized tank and therefore the scaring is reduced greatly in the industrial production. With a gathering sill, the problem of short-circuiting, which always appeares in the upper of the tank, can be solved very well.
In order to overcome the defects of air-agitated seed precipitation, such as scaring, liquid short-(circuiting,) the three-dimension flow fields with different structure are numerically simulated by computational fluid dynamics software. Euler/Euler approach was used to study the effects of structure on the flow field in the tank. Multi-fluid model, body-fitted coordinates and multi-block gird were adopted in the simulation. The simulating results are well consonant with the practical situations. The flow field is improved obviously when the flow velocity increases from (0.089m/s) to 0.1920.300m/s at the bottom of the optimized tank and therefore the scaring is reduced greatly in the industrial production. With a gathering sill, the problem of short-circuiting, which always appeares in the upper of the tank, can be solved very well.
基金
Project(030620) supported by the Dissertation Innovation Fund of Central South University