期刊文献+

一类非线性伪抛物型方程Cauchy问题的适定性

Well-posedness Analysis for a Class of Nonlinear Pseudoparabolic Cauchy Problems
下载PDF
导出
摘要 通过引入算子I-Δ的Bessel势将伪抛物型方程化成抽象的抛物型方程,然后利用算子半群理论讨论了一类非线性伪抛物型方程Cauchy问题的适定性问题. This paper changes a pseudoparabolic equation into an abstract parabolic equation by introducing the Bessel potential of the operator I-Δ firstly, and then semigroup theory is applied to deal with the well-posedness of this class of nonliear pseudoparabolic Cauchy problems.
出处 《大学数学》 北大核心 2005年第2期56-59,共4页 College Mathematics
关键词 伪抛物型方程 解的适定性 适度解 pseudoparabolic equation well-posedness of the solution mild solution
  • 相关文献

参考文献7

  • 1叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 2Karch G. Asymptotic Behavior of Solutions to Some Pseudoparabolic Equations[J]. Mathematical Methods in the Applies Sciences, 1997,20 : 271 - 289.
  • 3Stein E M. Singular Integrals and Differentiability Properties of Funetions[M]. Princeton: Princeton University Press, 1970.
  • 4Sobolev S. Some New Problems in Mathematical Physics[J]. Izv. Akad. Nauk SSSR Ser Mat, 1954, 18:3-50.
  • 5施德明 卞莉山.非线性三阶伪抛物型方程的特征问题.数学物理学报,1988,8(4):451-456.
  • 6Colton D. Pseudoparabolic Equation in One Space Variable[J]. Journal of Differential Equations, 1972, 12:559-565.
  • 7Showalter R E, Ting T W. Pseudoparabolic Partial Differential Equations[J]. SIAM J Math Anal Appl, 1970,1(1):1-26.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部