期刊文献+

基于稀疏二进制序列的低密度奇偶校验码 被引量:13

Low-density parity-check codes based on sparse binary sequences
下载PDF
导出
摘要 通过对低密度奇偶校验(LDPC)码构造的研究,提出了一种利用稀疏二进制序列构造规则LDPC码的新颖而简单的方法。在构造中,还提出了奇偶校验矩阵里元素‘1’的分布矩阵的概念。为了确保码Tanner图的最小圈长为8,利用了序列的周期自相关函数和周期互相关函数。通过仿真表明构造的新码在和积算法下进行迭代解码性能优异。由于产生的LDPC码本身固有的准循环结构,还能得到较低的编码复杂度。 A novel and simple construction of regular LDPC codes was proposed, which used sparse binary sequences, through studying construction methods of LDPC codes. The distribution matrix of ones in parity-check matrix was introduced into the new construction. The cyclic cross correlation function and the cyclic auto correlation function were utilized to ensure that the girth of Tanner graph was eight. The new codes perform well using the sum-product algorithm for iterative decoding. Low encoding complexity can also be achieved due to the inherent quasi-cyclic structure of the LDPC codes.
出处 《通信学报》 EI CSCD 北大核心 2005年第6期81-86,共6页 Journal on Communications
基金 国家自然基金资助项目(60496311)
关键词 低密度奇偶校验码 稀疏二进制序列 准循环码 迭代解码 和积算法 low-density parity-check codes sparse binary sequences quasi-cyclic codes iterative decoding sum-product algorithm
  • 相关文献

参考文献20

  • 1GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
  • 2GALLAGER R G. Low-Density Parity-Check Codes [D]. Cambridge,MA: MIT Press, 1963.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit performance of low-density parity-check codes [J]. Electronics Letters, 1996, 32 (18):1645-1646.
  • 4SIPSER M, SPIELMAN D.Expander codes [J]. IEEE Transactions on Information Theory, 1996, 42(6): 1710-1722.
  • 5WIBERG N. Codes and Decoding on General Graphs[D]. Linkoping University, Linkoping, Sweden, 1996.
  • 6MACKAY D J C. Good error-correcting codes based on very sparse matrices [J]. IEEE Trans Information Theory, 1999, 45 (2): 399-431.
  • 7HU Xiao-yu, ELEFTHERIOU E, ARNOLD D M. Progressive edge-growth tanner graphs [A]. IEEE Global Telecommunications Conference [C].2001, San Antonio, TX, USA, 2001. 995-1001.
  • 8DJCMacKay: online database of low-density parity-check codes [EB/OL].http://www.inference .phy. cam.ac.uk/mackay/codes/data.html.
  • 9CAMPELL O, MODHA D S, RAJAGOPALAN S. Designing LDPC codes using bit-filling [A]. IEEE International Conference on Communications[C]. 2001.155-59.
  • 10CAMPELL O, MODHA D S. Extended bit-filling and LDPC code design [A]. IEEE Global Telecommunications Conference[C]. San Antonio, TX, USA, 2001. 985-989.

二级参考文献9

  • 1GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions On Information Theory, 1962:8(1):21-28.
  • 2GALLAGER R G. Low-Density Parity-Check Codes[D]. Cambridge, MA: MIT Press, 1963.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996,32(18): 1645-1646.
  • 4MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans Information Theory, 1999, 45(2):399-431.
  • 5WIBERG N. Codes and Decoding on General Graphs[D]. Linkoping Univ, Linkoping,Sweden, 1996.
  • 6KOU Y, LIN S, FOSSORIER M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans Inform Theory, 2001, 47(7): 2711-2736.
  • 7靳蕃,陈志.组合编码原理及应用[M]上海:上海科学技术出版社,1994.
  • 8COOLSAET K. Cyclic difference sets[EB/OL]. http://www. inference.phy.cam.ac.uk/cds, 2003.
  • 9MACKAY D J C. Encyclopedia of sparse graph codes[EB/OL]. http://www.inference.phy.cam.ac.uk/mackay/codes/data.html, 2003.

共引文献10

同被引文献113

引证文献13

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部