摘要
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.
基金
theNationalScienceFundforDistinguishedYoungScholars(GrantNo.50325927)andbytheNationalNaturalScienceFoundationofChina(GrantNo.50479027)