期刊文献+

一族GHM型多尺度函数的构造

Construction of a family of GHM-based multi-scaling functions
下载PDF
导出
摘要 从具有2阶逼近的GHM多尺度函数出发,鉴于其逼近阶数相对较低的缺点,利用两尺度相似变换(TST)的方法,构造变换矩阵Mr(ω),将它的逼近阶提高到了任意大于2的整数,并保持了紧支性和对称性,提高了GHM多小波逼近光滑函数的能力。 This paper is based on the GHM multi-scaling functions with approximation order 2. With the help of two-scale similarity transform (TST), after constructing suitable transform matrix Mr(w) we are able to increase the approximation order to an arbitrary integer which is bigger than 2, and preserve the symmetry and compact support of the new multi-scaling functions. After doing that, we will get a family of new multi-wavelets based on GHM multi-wavelets, whose ability of approximating smooth functions is improved.
作者 李万社 程蓉
出处 《陕西工学院学报》 2005年第2期72-75,共4页 Journal of Shaanxi Institute of Technology
基金 国家自然科学基金资助项目(60272058)。
关键词 GHM多小波 逼近阶 两尺度相似变换 TST GHM multi-wavelets approximation order two-scale similarity transform TST
  • 相关文献

参考文献7

  • 1Cui Lihong,Cheng Zhengxing. An algorithm for constructing symmetric orthogonal multiwavelets by matrix symmetric extension [ J ]. Applied Mathematics and Computation,2004, Sum 149 ( 1 ): 227-243.
  • 2J Geronimo, D Hardin, P Massopust. Fractal functions and wavelet expansions based on several scaling functions [J]. Journal of Approximation Theory, 1994,78 (4) :373-401.
  • 3G Plonka, V Strela. Construction of multi - scaling functions with approximation and symmetry [ J ]. SIAM Journal on Mathematical Analysis, 1998,29 (2) :481-510.
  • 4V Strela, Multiwavelets. Theory and Applications [ D ]. Department of Mathematics, Massachusetts Institute of Technology,Cambridge, MA, 1996.
  • 5W Dahwen,C A Micchelli. Biorthorgonal wavelet expansions[J]. Constrctive Approximation,1997,13(2) :293-328.
  • 6V Strela. A note on Construction of biorthogonal multi - scaling functions[ M ]. In Contemporary Mathematics,A Aldroubi,E B Lin (eds.) ,AMS, 1998. 149-157.
  • 7Zhang Jiankang, Daridson. Design of interpolating biorthogonal multiwavelet system with compact support[ J ]. Applied and Computational Harmonic Analysis ,2001,11 (3) :420-438.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部