期刊文献+

4-氨基吡啶电化学合成工艺研究 被引量:3

Process Research on the Electrosynthesis of 4-Aminopyridine
下载PDF
导出
摘要 在阳离子隔膜电解槽用阴极恒电位的方法电化学合成了4-氨基吡啶,并对工艺条件进行了优化。循环伏安法表明,4-硝基氮氧化吡啶的还原过程有多个不稳定的中间产物生成。以铅粒为阴极,钛网镀二氧化铅为阳极,阴极液pH=3,4-硝基氮氧化吡啶质量百分浓度为1%,硫酸铵为支持电解质,10%的硫酸溶液为阳极液,还原电量为200%的理论电量及50℃下4-氨基吡啶的收率达88.2%,电流效率44.1%。该工艺过程简单,收率高,是可望取代污染严重的铁粉还原的绿色合成路线。 In a cationic membrane electrolytic cell, 4-aminopyridine was synthesized by constant potential of cathode technique and the process conditions were optimized. Its cyclic voltammetry shows that there exist quite a number of unstable intermediates during the electroreduction of 4-nitropyridine 1-oxide. Under the optimal conditions, which are as follows: granular lead used as cathode, Ti-base lead dioxide as anode and calomel electrode as reference electrode, the water solution of 4-nitropyridine-1-oxide with pH=3 and 1% mass concentration as cathodic electrolyte and the solution of sulfuric acid with 10% mass concentration as anodic electrolyte, ammonium sulfate as supporting electrolyte, supplying 200% theoretic electric quantity and the temperature at 50°C, the 88.2% electrolyses yield of 4-aminopyridine and 44.1% current efficiency can be reached respectively. This green synthesis technology, characterized by simple process and high yield, is expected to instead ferrous reduction, which pollutes environment seriously.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2005年第4期562-566,共5页 Journal of Chemical Engineering of Chinese Universities
关键词 4-氨基吡啶 4-硝基氮氧化吡啶 电还原 电合成 Cathodes Concentration (process) Cyclic voltammetry Electrolytes Electrolytic cells Sulfuric acid
  • 相关文献

参考文献7

二级参考文献31

共引文献32

同被引文献40

  • 1褚道葆,姚文俐,王金平,顾家山,李晓华,沈广霞.邻硝基苯酚在纳米TiO_2膜修饰电极上的异相电催化还原[J].应用化学,2004,21(10):1006-1010. 被引量:8
  • 2高全昌,陈栓虎,王卫东.电化学法合成对苯二胺[J].辽宁化工,1995,24(2):34-35. 被引量:10
  • 3高全昌,陈栓虎,王爱戎.电化学法还原对硝基氯代苯[J].西北大学学报(自然科学版),1995,25(2):107-108. 被引量:4
  • 4周丹,冯亚青,孟舒献,傅雪晶.钯/氧化铝催化剂对四氢糠醇合成吡啶的研究[J].高校化学工程学报,2006,20(2):250-253. 被引量:4
  • 5Calvin J R,Davis R D,Mcateer C H.Mechanistic investigation of the catalyzed vapor-phase formation of pyridine and quinoline bases using ^13CH2O,^13CH3OH,and deuterium-labeled aldehydes[J].Appl Catal A:Gen,2005,285(1-2):1-23.
  • 6Shimizu S,Abe N,Iguchi A et al.Synthesis of pyridine bases:general methods and recent advances in gas phase synthesis over ZSM-5 zeolite[J].Catal Surv Jpn,1998,2(1):71-76.
  • 7Jin F,Cui Y G,Li Y D.Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis[J].Appl Catal A Gen,2008,350(1):71-78.
  • 8Chu P,Dwyer F G.Organic ion exchange of ZSM-5 zeolite[J].Zeolites,1988,8(5):423-426.
  • 9Yamamura M,Chaki K,WakaTS-1uki T et al.Synthesis of ZSM-5 zeolite with small crystal size and iTS-1 catalytic performance for ethylene oligomerization[J].Zeolites,1994,14(8):643-648.
  • 10Maiganen A,Derouane E G,Nagy J B.FT-IR and solid-state NMR investigation of surface hydroxyl groups on dealuminted ZSM-5[J].Appl Surf Sci,1994,75(1-4):204-212.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部