摘要
研究目标不确定性量测、不确定性机动环境下的分布式多雷达跟踪.针对目标未知机动,把交互式多模型算法中的模型样本空间分成若干子集,分别在多个处理器上进行并行滤波,再在融合中心处理器上将各子处理器结果进行交互式处理,形成了分布交互式多模型算法,然后将它与概率数据关联PDA(ProbabilisticDataAssociation)相结合,得到了一种新的分布式鲁棒跟踪算法,数字仿真结果证明该算法计算量少,并且具有很强的自适应能力和良好的跟踪性能.
In this paper, we develop Chang's idea [5] further and propose DIMM (Distributed Interacting Multiple Model). Unlike Chang, we deal with the 'distributed' aspect at the model level. We study distributed multi-radar tracking algorithm under the environment of uncertain measurements and uncertain target maneuvers. For unknown target maneuver, we decompose the model space of Blom's IMM (interacting multiple model) [4] into several subsets and we are pleased to find that the mathematical technique of subsets is useful in describing model distribution; then we carry out parallel fibering on multiple local processors. By combining the results of local processors, we bbtain distributed IMM filtering algorithm. Like Chang [5], we make use of PDA; but unlike Chang, we use PDA in preprocessing to get an equivalent measurement for each target. By joining DIMM with PDA, a new distributed robust tracking algorithm is developed. Computer simulations show that the proposed new algorithm requires less computation and has strong adaptive ability and very good performance.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
1995年第2期260-264,共5页
Journal of Northwestern Polytechnical University
基金
国防预研基金
关键词
概率数据关联
雷达跟踪系统
多模型算法
target tracking, interacting multiple model (IMM), probabilistic data association (PDA)