摘要
本文讨论Belousov—Zhabotinskii化学反应一个新的三维模型的扩散系统,得到了Dirichlet问题的逗留性结果;Neumann问题正平衡解的唯一性及稳定性.
In this paper,the qualitative properties for a new model of Belousov- Zhabotinskii Chemical reactions are studied. We get the Persistence for the Dirichlet boundary Value prolbems.The uniqueness and stability of positive steady-state solutions for the Neumann boundary Value problems are gotten,too.
出处
《河南大学学报(自然科学版)》
CAS
1995年第1期1-9,共9页
Journal of Henan University:Natural Science
关键词
B-Z化学反应
扩散反应方程
定性分析
B-Z chemical reaction
diffusion systems
persistence
positive steady state solutions
uniqueness
stability