期刊文献+

A Modified Outlier Detection Method in Dynamic Data Reconciliation 被引量:1

A Modified Outlier Detection Method in Dynamic Data Reconciliation
下载PDF
导出
摘要 Data reconciliation technology can decrease the level of corruption of process data due to measurement noise, but the presence of outliers caused by process peaks or unmeasured disturbances will smear the reconciled results. Based on the analysis of limitation of conventional outlier detection algorithms, a modified outlier detection method in dynamic data reconciliation (DDR) is proposed in this paper. In the modified method, the outliers of each variable are distinguished individually and the weight is modified accordingly. Therefore, the modified method can use more information of normal data, and can efficiently decrease the effect of outliers. Simulation of a continuous stirred tank reactor (CSTR) process verifies the effectiveness of the proposed algorithm. Data reconciliation technology can decrease the level of corruption of process data due to measurement noise, but the presence of outliers caused by process peaks or unmeasured disturbances will smear the reconciled results. Based on the analysis of limitation of conventional outlier detection algorithms, a modified outlier detection method in dynamic data reconciliation (DDR) is proposed in this paper. In the modified method, the outliers of each variable are distinguished individually and the weight is modified accordingly. Therefore, the modified method can use more information of normal data, and can efficiently decrease the effect of outliers. Simulation of a continuous stirred tank reactor (CSTR) process verifies the effectiveness of the proposed algorithm.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期542-547,共6页 中国化学工程学报(英文版)
基金 Supported by the National Outstanding Youth Science Foundation of China (No. 60025308) and Key Technologies R&DProgram in the 10th Five-year Plan (No. 2001BA204B07)
关键词 data reconciliation outlier detection gross error 动态数据 校正方法 离群值检测法 鲁棒方法 TE问题 工业测量数据 误差
  • 相关文献

参考文献9

  • 1Darouach, M., Zasadzinski, M., "Data reconciliation in generalized linear dynamic systems", AIChE J., 37 (2), 193-210 (1991).
  • 2Narasimhan, S., Mah, R.S.H., "Generalized likelihood ratios for gross error identification in dynamic processes",AIChE J., 34 (8), 1321-1330 (1988).
  • 3Bagajewicz, M., Jiang, Q., "Integral approach to plant linear dynamic reconciliation", AIChE J., 43 (10), 2546-2557(1997).
  • 4Jang, S., Joseph, B., Mukal, H., "Comparison of two approaches to online parameter and state estimation of nonlinear systems", Ind. Eng. Chem. Process Des. Dev., 25,809-814 (1986).
  • 5Liebman, M.J., Edgar, T.F., Lasdon, L.S., "Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques", Comput. Chem.Eng., 16 (10/11), 963-986 (1992).
  • 6Kong, M.F., Chen, B.Z., Li, B., "An integral approach to dynamic data rectification", Comput. Chem. Eng., 24,749-753, (2000).
  • 7Chen, J., Bandoni, A., Romagnoli, J.A., "Outlier detection in process plant data", Comput. Chem. Eng., 22 (4/5),641-646, (1998).
  • 8Chen, J., Romagnoli, J.A., "A strategy for simultaneous dynamic data reconciliation and outlier detection", Comput.Chem. Eng., 22 (4/5), 559-562 (1998).
  • 9Abu-el-zeet, Z.H., Becerra, V.M., Roberts, P.D., "Combined bias and outlier identification in dynamic data reconciliation", Comput. Chem. Eng., 26, 921-935 (2002).

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部