期刊文献+

AN EFFECT ITERATION ALGORITHM FOR NUMERICAL SOLUTION OF DISCRETE HAMILTON-JACOBI-BELLMAN EQUATIONS 被引量:1

AN EFFECT ITERATION ALGORITHM FOR NUMERICAL SOLUTION OF DISCRETE HAMILTON-JACOBI-BELLMAN EQUATIONS
下载PDF
导出
摘要 An algorithm for numerical solution of discrete Hamilton-Jacobi-Bellman equations is proposed. The method begins with a suitable initial guess value of the solution,then finds a suitable matrix to linearize the system and constructs an iteration algorithm to generate the monotone sequence. The convergence of the algorithm for nonlinear discrete Hamilton-Jacobi-Bellman equations is proved. Some numerical examples are presented to confirm the effciency of this algorithm. An algorithm for numerical solution of discrete Hamilton-Jacobi-Bellman equations is proposed. The method begins with a suitable initial guess value of the solution,then finds a suitable matrix to linearize the system and constructs an iteration algorithm to generate the monotone sequence. The convergence of the algorithm for nonlinear discrete Hamilton-Jacobi-Bellman equations is proved. Some numerical examples are presented to confirm the effciency of this algorithm.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第3期347-351,共5页 高校应用数学学报(英文版)(B辑)
基金 SupportedbytheNationalNaturalScienceFoundationofChina(10471129)
关键词 iteration algorthm Hamilton-Jacobi-Bellman equation monotone sequence. iteration algorthm,Hamilton-Jacobi-Bellman equation,monotone sequence.
  • 相关文献

参考文献10

  • 1Bensoussan A,Lions J L.Impulse Control and Quasi-Variational Inequalities,Paris:Gauthier Villars,1984.
  • 2Bensoussan A,Lions J L.Applications of Variational Inequalities in Stochastic Control,Amsterdam,New York,Oxford:North-Holland,1982.
  • 3Fleming W H,Rishel R.Deterministic and Stochastic Optimal Control,Berlin:Springer,1975.
  • 4Evans L C.Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators,Trans Amer Math Soc,1983,275:245-255.
  • 5Boulbrachene M,Haiour M.The finite element approximation of Hamilton-Jacobi-Bellman equations,Comput Math Appl,2001,41:993-1007.
  • 6Zhou S,Zhan W.A new domain decomposition method for an HJB equation,J Comput Appl Math,2003,159:195-204.
  • 7Lions P L,Mercier B.Approximation numérique des équations de Hamilton-Jacobi-Bellman,RAIRO Numer Anal,1980,14:369-393.
  • 8Hoppe R H W.Multi-Grid methods for Hamilton-Jacobi-Bellman equations,Numer Math,1986,49:239-254.
  • 9Duvaut G,Lions J L.Inequalities in Mechanics and Physics,Berlin:Springer-Verlag,1976.
  • 10Friedman A.Variational Principles and Free-boundary Problems,New York:John Wiley,1982.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部