期刊文献+

矿区地下水系统演化混沌特性的Lyapunov指数判别 被引量:2

Lyapunove index to identify chaotic features evolved from underground mine water system
下载PDF
导出
摘要 系统的特征指数———Lyapunov指数在表征系统的混沌性质方面起着重要的作用,是定量描述系统对初始条件敏感程度的参数。根据Pacard和Takens提出的相空间重构技术,首先确定延迟时间和最佳嵌入维数,重构相空间后,再利用W olf提出的从单变量中提取Lyapunov指数的方法,分别计算了湖南湘中涟邵煤田大水岩溶矿区4个矿井涌水量时间序列的Lyapunov指数,按照混沌特性判别准则,结果表明,在开采条件下,各矿区地下水系统的演化存在明显的混沌特性,这不仅为矿区地下水系统的深入研究提供了理论依据,而且为矿井涌水量预测模型提供了有力的依据。 The systematic feature index Lyapunov played an important role in the chaotic features of the characterization system and is the coefficient of the sensitive degree ay initial conditions for the quantity statement system. Base on the phase space double structure technology provided by the Pacard and Takens, it is first to decide the relay time and the optimized inserted dimension, then to decide the double structure phase space. With the Lyapunov index method from the single variation provided by Wolf, it is individually to calculate the Lyapunov index of the 4 mine water inrush quantities and times from the large karst mining area in Lianshao coal field of Hunan. According to the identification code of the chaotic features, the results showed that under the mining conditions, there is obvious chaotic features in the evolution of the underground mine water system in each mine area. This will only provide the theoretical references to the detail research of the underground mine water system, but will provide the strong reference to the model to predict mine water inrush.
出处 《煤炭科学技术》 CAS 北大核心 2005年第9期75-77,共3页 Coal Science and Technology
基金 湖南省自然科学基金项目(01JJY2042)
关键词 矿区地下水系统 演化 混沌 LYAPUNOV指数 相空间重构 underground water system in mining area evolution chaotic Lyapunov index phase space double structure
  • 相关文献

参考文献9

二级参考文献16

  • 1王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94. 被引量:44
  • 2刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 3丁晶.洪水混沌分析[J].水资源研究,1992,13(3):14-18.
  • 4[3]Amilcare Porporato,Luca Ridolfo. Nonliear analysis of river flow time sequences[J]. Water Resources Research,1997,33(6):1353~1367.
  • 5[4]Packard N H. Geometry from a time series[J].Phys Rev Lett, 1980,459:712~716.
  • 6[5]Grassberger P,Procaccia I.Characterization of strange attractors[J].Phys Rev Lett,1983,50(5):346~349.
  • 7Lai Y C,Phys D,1998年,115期,1页
  • 8Lai Yingcheng,Phys.D,1998年,115期,1页
  • 9Wu Zuobing,Phys.D,1995年,85期,485页
  • 10Gao Jianbo,Phys Lett A,1993年,181期,153页

共引文献168

同被引文献9

  • 1Packard N H, et al. Geometry from a time series [ J ]. Physical Review Letter, 1980,459:712 -716.
  • 2Takens F. Detecting strange attractor in turbulenced [ J ]. Lecture Notes in Mathematics, 1980,898:366 - 381.
  • 3Grassberger P,Procaccia I. Measuring the Strangeness of Strange Attractors [ J ]. Physics D, 1983, ( 9 ) : 189 - 208.
  • 4A1Wolflj 1 B1Swinney. J1 A1 Vastanol Determining Lyapunov exponents from a time series[J]. Physica D, 1985 (9).
  • 5Hai-Feng Zhang Rui-Xin Wu Xin- Chu Fu. The emergence of chaos in complex dynamical networks. Chaos Solitions and Fractals[J].2006, ( 28 ): 472-479.
  • 6http://wenku.baidu.com/view/998896c 20c22590102029d8c.html[ol].
  • 7刘宗华.混沌动力学基础及应用[M].北京:高等教育出版社,2005.
  • 8包森,田立新,王军帅.中国能源生产与消费趋势预测和碳排放研究[J].自然资源学报,2010,25(8):1248-1254. 被引量:27
  • 9靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术,2002,30(6):1-4. 被引量:144

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部