期刊文献+

油气燃料临界燃烧和超临界燃烧的基础理论 被引量:3

BASIC THEORY ON CRITICAL AND SUPERCRITICAL COMBUSTION OF OIL/GAS FUELS
下载PDF
导出
摘要 利用热力学基本定律和常用状态方程vdWEOS、RKEOS、SRKEOS、PREOS及PGEOS,对CH4、C2H6、C3H8、C8H18、C16H34等的临界温度、临界压力、临界比容三者之间的相互关系进行了理论计算。还计算了He、H2、N2、O2、CO、CO2和水蒸气等的物性参数,并分别与其临界试验参数进行了对比分析。结果表明:理想气体状态方程PGEOS得到的结果最差,它对这些物质临界压力计算的平均误差高达260%以上,对临界温度计算的平均误差也在72%以上;而PREOS得到的结果最好,且对临界温度计算的平均误差不足0.2%,最大误差在0.6%以下,对临界压力计算的平均误差则小于0.8%;其余EOS对物质临界参数的描述则介于二者之间。其中:vdWEOS对这些物质临界压力描述的最大误差在60%以上,平均误差在14%以上;RKEOS和SRKEOS对临界压力描述的最大误差均在13%以上,平均误差在2.6%左右,但SRKEOS对临界温度的总体描述要好于RKEOS。因此,PGEOS不能用来表述这些物质临界参数之间的相互关系,而PREOS和SRKEOS可对这些物质临界参数之间的相互关系作出相对较好的描述。 With thermodynamic fundamentals and equations of state (EOS) of vdW EOS, RK EOS, SRK EOS, PR EOS and PG EOS, The physical parameters of critical temperature, pressure and specific volume is calculated theoretically for the major hydrocarbons such as CH4, C2H6, C 3H8, C8H18, C16H 34 etc. Also, the physical parameters of some major gases, such as He, H2, N2, O2, CO, CO2, and vapor etc., are calculated to make the demonstration and the study results referential-able. And all the parameters are analyzed and compared with their testing critical parameters respectively. The results show the result from PG EOS is the worst. The average error of the calculated critical pressures reaches more than 260% and the average error of the calculated critical temperatures is more than 72% for these substances. The result from PR EOS is the best. The average error of the calculated critical temperatures is less than 0.2% and the largest error is below 0.6%. The average error of the calculated critical pressures is less than 0.8%. The results from the other EOS are between the results from the above-mentioned 2 EOS. The largest error of calculated critical pressures from vdW EOS is above 60% and the average error is above 14%. All the largest errors of calculated critical pressures from RK EOS and SRK EOS are above 13% and the average errors about 2.6%. But the critical temperature calculated by SRK EOS is better than that by RK EOS. Therefore, PG EOS can't be used to describe the relationship of the critical parameters for these substances. But PR EOS and SRK EOS can describe the relationship of the critical parameters for these substances well. The conclusions provide necessary and basic theoretical base for study on critical and supercritical combustion of oil/gas fuels.
出处 《天然气工业》 EI CAS CSCD 北大核心 2005年第9期129-132,共4页 Natural Gas Industry
基金 国家自然科学基金项目资助(编号:50376003)。~~
关键词 石油 天然气 临界参数 状态方程 理论计算 分析 超临界 基础理论 理想气体状态方程 气燃料 Aromatic hydrocarbons Crude petroleum Density (specific gravity) Equations of state Pressure effects Spontaneous combustion Thermodynamics
  • 相关文献

参考文献6

  • 1Ilya Polishuk, Jaime Wisniak, Hugo Segura. Prediction of the critical locus in binary mixtures using equation of state-1. Cubic equations of state, classical mixing rules,mixtures of methane-alkanes. Fluid Phase Equilibria,1999;(164) :13-47.
  • 2Li-Sheng Wang, Jürgen Gmehling. Improvement of the SRK equation of state for representing volumetric properties of petroleum fluids using Dortmund Data Bank. Journal of Chemical Engineering Science, 1999 ; (54): 3885 -3892.
  • 3A Danesh et al. Improving predictions of state by modifying its parameters for super critical components of hydrocarbon reservoir fluids. Fluid Phase Equilibria, 1995;112:45-61.
  • 4Mühlbauer A L et al. Computation and thermodynamic interpretation of high-pressure vapor liquid equilibrium-a review. The Chemical Engineering Journal, 1995; (60):1-29.
  • 5Mihelle Barragan, Stephen Woods et al. Thermodynamic Equations of state for hydrazine and monomethylhydrazine. Combustion and Flame, 2002; (131): 316 -328.
  • 6Wuzi Gao, Robert L et al. Alternate equation of state combining rules and interaction parameter generalizations for asymmetric mixtures. Fluid Phase Equilibria, 2003;(213) :19-37.

同被引文献30

  • 1郭平,黄伟岗,姜贻伟,毕建霞,陈召佑.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101. 被引量:51
  • 2汪海清,刘永长,贺萍,宋军.燃油液滴高压蒸发规律探讨[J].华中理工大学学报,1996,24(8):99-101. 被引量:6
  • 3李云清,何鹏,王金成.碳氢燃料在亚临界及超临界状态下的状态方程研究[J].石油与天然气化工,2007,36(1):1-3. 被引量:8
  • 4杨继盛.采气工艺基础[M].北京:石油工业出版社,1994.9-11.
  • 5张洪君,刘春来,王晓舟,杨永祥.深层保压密闭取心技术在徐深12井的应用[J].石油钻采工艺,2007,29(4):110-111. 被引量:26
  • 6Givler D Shawn,Abraham John.Supercritical Droplet Vaporization and Combustion Studies[J].Progress in Energy and Combustion Science,1996,22(1):1-28.
  • 7Sazhin S Sergei.Advanced Models of Droplet Heating and Evaporation[J].Progress in Energy and Combustion Science,2006,32(2):162-214.
  • 8Sazhin S S,Kristyadi T,Adbelghaffar W A,et al.Models for Fuel Droplet Heating and Evaporation:Comparative Analysis[J].Fuel,2006,85 (12):1613-1630.
  • 9Akira Umemura,Yosuke Shimada.Characteristics of Supercritical Droplet Gasification[A].In:Twenty-Sixth Symposinm (International) on Combustion[C].Naples,Italy,1996.
  • 10Lee Huen,Thodos George.Generalized Treatment of SelfDiffusivity for the Gaseous and Liquid States of Fluids[J].Industrial and Engineering Chemistry Fundamentals,1983,22(1):17-26.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部