期刊文献+

并行数据挖掘算法综述 被引量:15

Survey of Parallel Algorithms for Data Mining
下载PDF
导出
摘要 数据挖掘在工业和商业领域中发挥着越来越重要的作用。随着数据量的增加,挖掘算法处理海量数据的能力问题日益突出。研究并行算法,是解决这一问题的有效途径。该文对常用的数据挖掘算法C4.5,SLIQ,SPRINT,关联规则,K-平均值,K-最近邻,贝叶斯网络,人工神经网络,遗传算法及并行性进行了研究探讨,为数据挖掘研究者提供借鉴。 Data Mining plays an important role in industry and business. The ability of data mining algorithms to deal with mass-data becomes more important with the increase in data. Parallel technology is an effective way to resolve this problem. This paper studies some common algorithms for data mining, such as C4.5, SLIQ, SPRINT, association rule, K-means, K-nearest neighbors, Bayesian network, artificial neural network and genetic algorithm, and their parallelism.
出处 《电子科技》 2006年第1期65-68,73,共5页 Electronic Science and Technology
关键词 C4.5 SLIQ SPRINT 关联规则 K-平均值 K-最近邻 贝叶斯网络 人工神经网络 遗传算法 并行性 Data mining C4.5 SLIQ SPRINT association rule K-means K-nearest neighbors Bayesian network artificial neural network genetic algorithm parallelism
  • 相关文献

同被引文献105

引证文献15

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部