摘要
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.
基金
ThispaperisfinanciallysupportedbytheScientific&TechnicalKeyProjectofHubeiProvince(No.2004AA306B03)andtheNationalNaturalScienceFoundationofChina(No.49902022).