期刊文献+

黎曼流形上向量场奇异点的惟一性和简单牛顿迭代法

Uniqueness of the singular point of a vector field on Riemannian manifold and its simple Newton's iteration.
下载PDF
导出
摘要 在中心Lipschitz条件下,证明了黎曼流形上向量场的简单牛顿迭代法的收敛性和黎曼流形上向量场的奇异点的惟一性定理. Under the assumption that the covariant derivatives of vector fields on Riemannian manifolds satisfy the center Lipschitz condition, the convergence of simple Newton's iteration for the vector fields is analyzed and the uniqueness result on singular points of the vector fields is given.
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第1期24-27,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江省教育厅科研基金资助项目(20040162)
关键词 黎曼流形 向量场 协变导数 奇异点 Riemannian manifolds vector field covariant derivative singular point
  • 相关文献

参考文献9

  • 1FERREIRA O P, SVAITER B F. Kantorovich's theorem on Newton's method in Riemannian manifolds[J].J of Complexity, 2002, 18(3): 304-329.
  • 2GABAY D. Minimizing a differentiablc function over a differential manifold[J]. J Optira Theory Appl, 1982,37(2):177-219.
  • 3SMITH S T. Optimization techniques on Riemannian manifolds[C]//Fields Institute Communications. Providence: American Mathematical Society, 1994, 3:113-146.
  • 4SMITH S T. Geometric Optimization Method for Adaptive Filtering[D]. Cambridge: Harvard University,1993.
  • 5UDRISTE C, Convex Functions andMethods on Riemannian Manifolds[C]//and Its Applications. Dordrecht: Kluwe1994.Optimization Mathematicsr Academic,1994.
  • 6WANG X H. Convergence of Newton's method and inverse function in Banach space [J]. Math Comput,1999, 68(225): 169-186.
  • 7DOCARMO M P, Riemannian Geometry[M]. Boston:Birkhauser, 1992,.
  • 8BOOTHBY W M. An Introduction to Differentiable Manifolds and Riemannian Geometry [M]. Second Edition, New York.. Academic Press, 1986.
  • 9王兴华,李冲.解方程算法的局部行为和整体行为[J].科学通报,2001,46(6):444-451. 被引量:6

二级参考文献9

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部