期刊文献+

The Hyperspace of the Regions Below of Continuous Maps from the Converging Sequence 被引量:4

The Hyperspace of the Regions Below of Continuous Maps from the Converging Sequence
下载PDF
导出
摘要 Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all continuous maps from S to I and ↓C0(S) = {↓f∈↓C(S) : f(0) = 0}. ↓USC(S) endowed with the Vietoris topology is a topological space. A pair of topological spaces (X, Y) means that X is a topological space and Y is its subspace. Two pairs of topological spaces (X, Y) and (A, B) are called pair-homeomorphic (≈) if there exists a homeomorphism h : X→A from X onto A such that h(Y) = B. It is proved that, (↓USC(S),↓C0(S)) ≈(Q, s) and (↓USC(S),↓C(S)/ ↓C0(S))≈(Q, c0), where Q = [-1,1]^ω is the Hilbert cube and s = (-1,1)^ω,c0= {(xn)∈Q : limn→∞= 0}. But we do not know what (↓USC(S),↓C(S))is. Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all continuous maps from S to I and ↓C0(S) = {↓f∈↓C(S) : f(0) = 0}. ↓USC(S) endowed with the Vietoris topology is a topological space. A pair of topological spaces (X, Y) means that X is a topological space and Y is its subspace. Two pairs of topological spaces (X, Y) and (A, B) are called pair-homeomorphic (≈) if there exists a homeomorphism h : X→A from X onto A such that h(Y) = B. It is proved that, (↓USC(S),↓C0(S)) ≈(Q, s) and (↓USC(S),↓C(S)/ ↓C0(S))≈(Q, c0), where Q = [-1,1]^ω is the Hilbert cube and s = (-1,1)^ω,c0= {(xn)∈Q : limn→∞= 0}. But we do not know what (↓USC(S),↓C(S))is.
出处 《Northeastern Mathematical Journal》 CSCD 2006年第1期46-54,共9页 东北数学(英文版)
基金 The NNSF (10471084) of China and by Guangdong Provincial Natural Science Foundation(04010985).
关键词 regions below upper semi-continuity the Hilbert cube pseudo-interior strongly universal the converging sequence regions below, upper semi-continuity, the Hilbert cube, pseudo-interior,strongly universal, the converging sequence
  • 相关文献

二级参考文献7

  • 1Wojdyslawski,M.Retractes absoulus et hyperespaces des continus, Fund[].Mathematica Journal.1939
  • 2Kadec,M. I.On topological equivalence of separable Banach spaces, Doke, Akad, Nauk SSSR (N S.), 1966, 167(1): 23-25 (in Russian); English translation: Soviet Math[].Dokl.1966
  • 3Andersonv,R. D.Hilbert space is homeomorphic to countable infinite product of line, Bull[].Journal of the American Mathematical Society.1966
  • 4Lawson,J. D.Intrinsic lattice and semilattice topologies, Proc.Lattice Theory Conf, U[].Houston.1973
  • 5Serra,J.Introduction to mathematical morphology, Comput[].Vision Graphics Image Process.1986
  • 6Torun’czyk,H.On CE-images of the Hilbert cube and characterizations of Q-manifolds, Fund[].Mathematica Journal.1980
  • 7Sakai,K.The completions of metric ANR’s and homotopy dense subsets, J.Math[].Social Science Japan Journal.2000

共引文献7

同被引文献5

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部