期刊文献+

新元古代晚期盖帽碳酸盐岩的成因与“雪球地球”的终结机制 被引量:16

Formation of Late Neoproterozoic Cap Carbonates and Termination Mechanism of “Snowball Earth”
下载PDF
导出
摘要 新元古代晚期约635Ma的地球发育了到达赤道附近的冰川作用,地质记录上表现为代表寒冷气候的冰期沉积杂砾岩,直接被代表温暖环境的碳酸盐岩层(常称盖帽碳酸盐岩)覆盖。由于盖帽碳酸盐岩奇特的岩石学和地球化学特征,引起了对其成因认识的巨大争论,提出了“雪球地球”和“甲烷渗漏”等假说。“雪球地球”假设可以解释一些令人困惑的地学现象,如低纬度和低海拔冰川沉积、盖帽碳酸盐岩、碳酸盐δ13C负漂移和条带状铁矿层等,但许多科学家对此提出了质疑。最近对盖帽碳酸盐岩的δ13C分析结果(最低达-41‰)、盖帽碳酸盐岩发育的类似现代冷泉碳酸盐岩沉积组构等似乎支持“甲烷渗漏”假说。 The Earth's most severe glaciation is considered to have occurred about 635 million years ago, in the late Neoproterozoic era, and is believed to have engulfed the entire earth under ice to create what came to be described as "Snowball Earth". Carbonate rocks directly and ubiquitously overlie Neoproterozoic glacial diamicrites on almost every continent, and are commonly referred to as "cap carbonates". Their unusual facies and strongly negative carbon isotopic signature stirred up considerable debates in the academic community, as they wonder how cap carbonates could have formed, thus "Snowball Earth" and "Methane Seep" were hypothesized. The "Snowball earth" hypothesis can explain many phenomena related to the Neoproterozoic glaciations, cap carbonates have been controversially ascribed to the aftermath of almost complete shutdown of the ocean ecosystems for millions of years during such ice ages. Conversely, it has also been suggested that these carbonate rocks were the result of destabilization of methane hydrates during deglaciation and concomitant flooding of continental shelves and interior basins. Recent carbon isotopic data of cap carbonates (δ^13C as low as -41‰) provides direct evidence for methane -influenced process during deglaciation, strongly supported "Methane Seep" hypothesis.
出处 《沉积学报》 CAS CSCD 北大核心 2006年第2期235-241,共7页 Acta Sedimentologica Sinica
基金 国家自然科学基金项目(批准号:40472059) 中国科学院知识创新工程重要方向项目(KZCX3-SW-224)资助
关键词 新元古代 雪球地球 盖帽碳酸盐岩 天然气水合物 甲烷渗漏 cap carbonate, snowball Earth, gas hydrates, methane seep, Neoproterozoic
  • 相关文献

参考文献46

  • 1Kaufman A L,Knoll G H,Narbonne G M.Isotopes,ice ages,and terminal Proterozoic earth history.Proceedings of the National Academy of Sciences.USA.1997,94:6600~6605.
  • 2Jacobsen S B,Kaufman A J.The Sr,C and O isotopic evolution of Neoproterozoic seawater.Chemical Geology,1999,161:37~57.
  • 3Harland W B.Critical evidence for a great infra-Cambrian glaciation.Geology Rundshau,1964,54:45~61.
  • 4Kirschvink J L.Late Proterozoic low-latitude global glaciation:the Snowball Earth.In:Schopf J W,Klein C,eds.The Proterozoic Biosphere.Cambridge University Press,1992,51~52.
  • 5Hoffmann K H,Condon D J,Bowring S A,et al.U-Pb zircon date from the Neoproterozoic Ghaub Formation,Namibia:Constraints on Marinoan glaciation.Geology,2004,32:817~820.
  • 6王家生,甘华阳,魏清,胡高伟,葛倩.三峡“盖帽”白云岩的碳、硫稳定同位素研究及其成因探讨[J].现代地质,2005,19(1):14-20. 被引量:50
  • 7Kennedy M J,Christie-Blick N,Sohl L E.Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?.Geology,2001,29:443~446.
  • 8Jiang G,Kennedy M J,Christie-Blick N.Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates.Nature,2003,426:822-826.
  • 9Hoffman P F,Kaufman A J,Halverson G P,et al.A Neoproterozoic snowball Earth.Science,1998,281:1342~1346.
  • 10Hoffman P E,Schrag D P.The snowball Earth hypothesis:testing the limits of global change.Terra Nova,2002,14:129~155.

二级参考文献99

  • 1陈多福,陈先沛.贵州瓮福磷矿中的硅化作用[J].沉积学报,1993,11(2):58-65. 被引量:9
  • 2韩发,R.W.哈钦森.大厂锡矿床成因综合分析及成矿模式[J].地球学报,1991,18(1):61-80. 被引量:9
  • 3Suess E, Torres M E, Bohrmann G, etal. Gas hydrate destabilization: enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia convergent margin [ J ].Earth and Planetary Science Letters, 1999, 170:1 -15.
  • 4Suess E, Torres M E, Bohrmann G, et al. Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin [A]. Paull C K,Dillon W P. Natural Gas Hydrates: Occurrence, Distribution,and Detcetion[ C ]. Washington, D C: American Geophysical Union, 2001. 87-98.
  • 5Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from Cascadia subduction zone and their relation to gas hydrate stability [J]. Geology, 1998, 26:647-650.
  • 6Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at hydrate ridge: Classification,distribution, and origin of authigenic lithologies [ A ]. Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Detection [ C ]. Washington, D C: American Geophysical Union, 2001. 99 - 114.
  • 7Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites [ J]. Earth and Planetary Science Letters, 2002, 203: 165 - 180.
  • 8Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10:965 - 971.
  • 9Hesseblo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406:392 -395.
  • 10Krull E S, Retallack G J. δ13C depth profile from paleosoils across the Permian-Triassic boundary: Evidence for methane release [J]. Geological Society of America Bulletin, 2000, 112:1459 - 1472.

共引文献160

同被引文献328

引证文献16

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部