期刊文献+

Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection 被引量:6

Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection
下载PDF
导出
摘要 We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment. We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.
出处 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2006年第2期247-259,共13页 中国天文和天体物理学报(英文版)
基金 Supported by the National Natural Science Foundation of China.
关键词 Sun: corona - Sun: coronal mass ejections (CMEs) - Sun: activitySun: magnetic fields Sun: corona - Sun: coronal mass ejections (CMEs) - Sun: activitySun: magnetic fields
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]J.M.Zhang,L.Z.Ma,J.Y.Zhang,Q.Deng,J.H.Du,Z.Y.Zhong and Z.W.Zhang,Superalloys 718,625,706 and Various Derivatives ed.E.A.Loria (The Minerals,Metals and Materials Society,1997)p.183.
  • 2[2]J.M.Zhang,Z.Y.Gao,J.Y.Zhuang and Z.Y.Zhong,Metall.Mater.Trans.A 30A (1999) 2701.
  • 3[3]C.M.Sellars,Mater.Sci.Technol.6 (1990) 1072.
  • 4[4]C.M.Sellars,Int.Conf.on THERMEC 88,Tokyo,ed.Ⅰ.Tamura Iron Steel Inst.Jpn.June 6-10(1998) 448.
  • 5[5]C.M.Sellars and G.J.Davies,TMS,London,1979,p.3.
  • 6[6]R.Kopp,K.Karhausen and R.Schneidars,Proc.of 4th ICTP (Beijing,September,1993) p.1203.
  • 7[7]Y.V.R.K.Prasad and T.Seshacharyulu,Inter.Mater.Rev.43 (1998) 243.
  • 8[8]C.Devas,I.V.Samarasekera and E.B.Hawbolt,Metall.Trans.A 22A (1991) 335.
  • 9[9]G.S.Shen,S.L.Semitin and R.Shivpuri,Metall.Mater.Trans.A 26A (1997) 1795.
  • 10[10].J.H.Beynon,P.R.Brown,S.I.Mizban,A.R.S.Ponter and C.M.Sellars,Proc.of NUMIFORM Conf.eds.K.Mattiasson,A.Samuelsson,R.D.Wood,O.C.Zienkiewicz and A.A.Balkerna (Gothenburg,Sweden,Aug.2529,1986,Rotterdam,Holland) p.213.

共引文献60

同被引文献61

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部