期刊文献+

基于小波包能量谱的HMM钻头磨损监测 被引量:8

Drill Wear Monitoring by Using Hidden Markov Model(HMM) Based on Wavelet Packets Energy Spectrum
下载PDF
导出
摘要 从工程应用的角度论述了小波包分解原理及其能量谱监测理论,并将该理论应用于钻削力信号特征提取中,针对钻削过程特征矢量与钻头磨损之间具有较强的随机性和不确定性的特点,提出一种基于隐马尔可夫模型(HMM)的钻头磨损监测方法。实验结果表明,通过对钻削力信号进行多层小波包分解,提取各频段能量谱作为特征矢量可准确刻画工艺系统随钻头磨损的演化规律,利用HMM建立的各钻头磨损状态小波包能量谱的统计模型可有效跟踪钻头磨损的发展趋势,实现钻头磨损状态和寿命的监测。 From an angle of engineering application, this paper dealt with the wavelet packets decomposition principle and its energy spectrum monitoring theory, which were used to extract the fea tures of drilling force signals. Meanwhile, with an aim at the strong randomization and uncertainty characteristics between the feature vectors and drill wears in drilling process, a kind of drill wear monitoring method based on Hidden Markov Model(HMM) was presented. The experimental results in dicate that the energy spectrum feature vectors of the drilling force signals extracted from multi-layer wavelet packets decomposition can accurately portray the evolution laws of technological system with drill wears, and that the statistics model for the wavelet packets energy spectrum of each drill wear condition can be established by using HMM,which can effectively track the developing trends of drill wears so as to realize the monitoring of drill wear states and tool life.
机构地区 西安理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第12期1237-1241,共5页 China Mechanical Engineering
关键词 钻头磨损监测 钻削力 小波包能量谱 HMM drill wear monitoring drilling force wavelet packets energy spectrum HMM
  • 相关文献

参考文献11

  • 1Brinksmeier E. Prediction of Tool Fracture in Drilling. Annals of CIRP,1990,39(1): 97-105
  • 2马建峰.铣削过程中刀具磨损智能监测技术研究:[博士学位论文].北京:北京理工大学,2001
  • 3Paya B A,Esat I I, Badi M N M. Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor. Mechanical Systems and Signal Processing,1997, 11(5): 751-765
  • 4李小俚,姚英学,袁哲俊.基于小波模糊神经网络刀具监控系统研究[J].机械工程学报,1998,34(1):59-63. 被引量:13
  • 5Tansel I N ,Arkan T T,Bao W Y,et al. Tool Wear Estimation in Micro-machining. Part Ⅱ: Neural-network based Periodic Inspector for Non-metals. International Journal of Machine Tools & Manufacture, 2000,40 (4): 609 - 620
  • 6冯长建,丁启全,吴昭同.混合SOM和HMM方法在旋转机械升速全过程故障诊断中的应用[J].中国机械工程,2002,13(20):1711-1714. 被引量:7
  • 7李志农,吴昭同,丁启全,何永勇,褚福磊.小波和FHMM在旋转机械升降速过程中的应用[J].控制工程,2003,10(4):299-301. 被引量:4
  • 8Ya Wu,Dut R. Feature Exetraction and Assessment Using Wavelet Packets for Monitoring of Machining Processes. Mechanical Systems and Singnal Processing, 1996,10( 1 ) ; 29 - 53
  • 9Ertunc H M, Loparo K A. A Decision Fusion Algorithm for Tool Wear Condition Monitoring in Drilling. International Journal of Machine Tools Manufacture, 2001, 41(9) : 1347-1362
  • 10Ertunc H M, Loparo K A, Ocak H. Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs). International Journal of Machine Tools & Manufacture, 2001,41(9) : 1363-1384

二级参考文献8

  • 1周晓凯,严普强.用小波分析铁路车辆滚动轴承诊断方法[J].清华大学学报(自然科学版),1996,36(8):29-33. 被引量:17
  • 2童进.隐Markov模型在旋转机械升降速过程故障诊断中的应用研究:博士学位论文[M].杭州:浙江大学,1999..
  • 3Ghahramani Z, Jordan M. Factorial hidden Markovmodels[J]. Machine Learing, 1997, 29:245-275.
  • 4Logan B, Moreno P. Factorial HMMs for acoustic modeling[A]. Acoustics Speech and Signal[C]. Proceedings of the IEEE International Conference,1998, 2(S) : 813-816.
  • 5Li Dan,Int J Mach Tools Manuf,1990年,30卷,4期,579页
  • 6秦前清 扬宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 7黄文虎 夏松波 刘瑞岩 等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1997..
  • 8童进,吴昭同,严拱标.大型旋转机械升降速过程故障诊断研究[J].振动.测试与诊断,1999,19(3):193-195. 被引量:3

共引文献91

同被引文献79

引证文献8

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部